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Abstract. We study a finite-dimensional algebra Λ constructed from a Postnikov diagram D in a

disk, obtained from the dimer algebra of Baur-King-Marsh by factoring out the ideal generated by the
boundary idempotent. Thus, Λ is isomorphic to the stable endomorphism algebra of a cluster tilting

module T ∈ CM(B) introduced by Jensen-King-Su in order to categorify the cluster algebra structure
of C[Grk(Cn)]. We show that Λ is self-injective if and only if D has a certain rotational symmetry.

In this case, Λ is the Jacobian algebra of a self-injective quiver with potential, which implies that its

truncated Jacobian algebras in the sense of Herschend-Iyama are 2-representation finite. We study cuts
and mutations of such quivers with potential leading to some new 2-representation finite algebras.

Introduction

In this article we study algebras constructed from (k, n)-Postnikov diagrams. These are configurations
of oriented curves in the disk satisfying some axioms, and were defined in [Pos06] to study total positivity
of the Grassmannian Grk(Cn). The combinatorial data of such a diagram has been shown in [OPS15] to
be equivalent to the data of a maximal noncrossing collection of k-element subsets of {1, . . . , n}.

To a Postnikov diagram D one can associate (see [BKM16]) a planar ice quiver with potential
(Q,W,F ) = (Q,W,F )(D), and consider the frozen Jacobian algebra A = A(D) (which is infinite di-
mensional). If one then quotients out the idempotent e corresponding to the boundary (frozen) vertices,
one gets a quiver with potential (Q,W ) whose Jacobian algebra Λ = Λ(D) is finite dimensional, and this
is the main object of our study.

One can also label the vertices of Q(D) by the k-element subsets appearing in the maximal noncrossing
collection corresponding to D. Postnikov diagrams were used in [Sco06] to show that the homogeneous
coordinate ring of Grk(Cn) is a cluster algebra: the k-element subsets are labels for the Plücker coordi-
nates, which are cluster variables. The maximal noncrossing collections correspond precisely to clusters,
and indeed the quiver Q corresponds to the quiver of the cluster given by its collection. By [OPS15], every
cluster consisting of Plücker coordinates appears in this way (since all maximal noncrossing collections
appear as the labels of such a quiver Q(D)).

There is an algebra B, depending only on k and n, which was used in [JKS16] to categorify the cluster
algebra structure of the homogeneous coordinate ring of Grk(Cn), building on the categorification of the
coordinate ring of an affine open cell constructed in [GLS08]. The categorification takes place in CM(B),
where Jensen-King-Su define a Cohen-Macaulay B-module LI of rank 1 for every k-element subset I of
{1, . . . n}. Given a maximal noncrossing collection I, one can define a module

T =
⊕
I∈I

LI

and this module is shown in [JKS16] to be cluster tilting in CM(B). One of the main results in [BKM16]
is that there is an isomorphism

A ∼= EndB(T )

where A is the frozen Jacobian algebra corresponding to the Postnikov diagram associated to I. The
frozen vertices correspond to projective-injective B-modules, so there is an isomorphism

Λ ∼= EndB(T ).

It turns out that Λ is the same if we take the completed algebra B̂ instead of B, so we can use results
about the completed case. The stable category CM(B̂) is a 2-Calabi-Yau triangulated category with
a cluster tilting object T , and we can use the machinery of [IO13] to prove results about the algebra
EndB̂(T ) (which is, as we said, isomorphic to Λ).

Our main result is that Λ is self-injective if and only if D is symmetric under rotation by 2kπ/n (which
corresponds to I being invariant with respect to adding k to all elements).

Thus Postnikov diagrams turn out to be a new source of planar self-injective quivers with potential
in the sense of [HI11b]. Previously, the only known planar self-injective quivers with potential were
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mutation equivalent to so called “squares”, “triangles”, or “n-gons”, in the terminology of [HI11b, §9].
The algebras coming in this way from “n-gons” are precisely the self-injective cluster tilted algebras
classified by Ringel ([Rin08]). We construct some new examples not belonging to the above families,
thus answering [HI11b, Question 10.1(1)] in the negative. In fact, two counterexamples had already been
found (and we recover them), but they were not published. In particular, we construct an infinite family
of algebras for which the Nakayama permutation has arbitrarily large order. Previously, the only known
self-injective planar quivers with potential with Nakayama permutation of order at least 6 were mutation
equivalent to “n-gons”, and our examples are not of this type.

Self-injective Jacobian algebras are precisely the 3-preprojective algebras of 2-representation finite
algebras ([HI11b]). The latter can be constructed by choosing an appropriate set of arrows C (called
a cut) in the quiver. We exploit the results of Herschend-Iyama to prove that for a given symmetric
Postnikov diagram, all such 2-representation finite algebras ΛC are iterated 2-APR tilts of each other, so
in particular they are derived equivalent. Moreover, it is interesting to know when a cut is invariant under
the Nakayama automorphism, since in this case ΛC is twisted 2 l−1

l -Calabi-Yau for some l ([HI11a]). In
our setting, the Nakayama automorphism is simply given by rotation in the plane, so this condition is
easily accessible.

One can study mutations of cluster tilting objects, of quivers with potential, or of Postnikov diagrams
(the latter is called geometric exchange). These all correspond to each other, with the caveat that only
certain vertices of the quiver become mutable (since geometric exchange only works for some regions of the
disk). In [Pos06] it is proved that geometric exchange is transitive on the set of (k, n)-Postnikov diagrams,

and we deduce that mutation is transitive on cluster tilting objects in CM(B̂) whose indecomposable
summands have rank 1. We also give a direct proof of a special case of a theorem which appeared in
[HI11b] about mutations along a Nakayama orbit.

It should be noted that many of the statements we present are combinations of published results and
probably known to experts, even though they cannot be found in the literature as we state them. The
original contributions of this paper are in the results of Section 7, Section 8 and in the new examples of
Sections 9 and 10.

The structure of this article is as follows. In Section 1 we set up some notation and conventions. In
Section 2 we recall the definitions we need about ice quivers with potential and frozen Jacobian algebras.
In Section 3 we define Postnikov diagrams, explain their combinatorics and use them to construct ice
quivers with potential. In Section 4 we collect some results about cluster tilting objects with self-injective
endomorphism algebras. In Section 5 we define the algebra B and the modules LI , as well as compute
the action of the Serre functor of CM(B̂) on the modules LI . In Section 6 we define the module T and

study cluster tilting objects and their mutations in CM(B̂). We interpret those mutations in terms of
mutations of quivers with potential and geometric exchange. In Section 7 we consider Postnikov diagrams
which are rotation symmetric, and prove our main result. In Section 8 we study cuts for self-injective
quivers with potential arising from symmetric Postnikov diagrams. In Sections 9 and 10 we present some
examples of self-injective quivers with potential constructed in this way. We recover an infinite family
found in [HI11b], as well as some members of another infinite family. We construct a new infinite family,
and finally some sporadic cases.

Acknowledgement. I am thankful to my advisor Martin Herschend for the many helpful discussions
and comments. I would like to thank Jakob Zimmermann for his help with the computational aspects
of determining self-injectivity, and both him and Laertis Vaso for suggestions about the manuscript. I
also thank the anonymous referees for spotting issues and suggesting improvements to previous versions
of the paper. Finally, my thanks go to Karin Baur, Alastair King and Robert Marsh, for their helpful
comments.

1. Notation and conventions

By an algebra Λ we mean a unital, associative and basic C-algebra unless otherwise specified. We
write Λ mod (mod Λ) for the category of finitely generated left (right) Λ-modules. If Λ is graded by

an abelian group G, we write Λ modG (modG Λ) for the category of G-graded finitely generated left
(right) Λ-modules. In various contexts we will denote by D the functor HomC(−,C). Unless otherwise
specified, “module” means object of Λ mod. If ϕ : Λ → Λ is a ring automorphism and M ∈ Λ mod, we
define ϕM ∈ Λ mod to be M as an abelian group, with a ∗ϕ m = ϕ(a)m. Similarly we define Mϕ by
m ∗ϕ a = mϕ(a), for M ∈ mod Λ. The composition g ◦ f means that f is applied first and g second.

Throughout this article, we will fix two positive integers k ≤ n. We denote by [n] the set Z/nZ, usually

equipped with the cyclic ordering. We write
(

[n]
k

)
for the set of k-element subsets of [n]. For a subset I
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of [n], we write

I + k := {i+ k | i ∈ I} ⊆ [n]

and for a subset I of
(

[n]
k

)
, we write

I + k := {I + k | I ∈ I} ⊆
(

[n]

k

)
.

2. Ice quivers with potential

In this section we recall some definitions, notation and facts about (ice) quivers with potential (see
[BIRS11] for a reference). Let Q = (Q0, Q1) be a finite quiver without loops and 2-cycles. We can

complete the path algebra CQ with respect to the 〈Q1〉-adic topology, and denote the completion by ĈQ.
A potential on Q is an element

W ∈ ĈQ
/[

ĈQ, ĈQ
]
,

where
[
ĈQ, ĈQ

]
is the vector space spanned by commutators in ĈQ, and denotes closure in the

〈Q1〉-adic topology. In other words, W is a (possibly infinite) linear combination of cycles in Q, where
we identify cycles up to cyclic permutation of their arrows. We say that W is finite if it can be written

as a finite such linear combination. For a ∈ Q1, we can define the cyclic derivative ∂a : ĈQ→ ĈQ by

∂a(a1 · · · al) =
∑
ai=a

ai+1 · · · ala1 · · · ai−1

and extended by linearity and continuity on ĈQ. We also get an induced map ∂a : ĈQ
/[

ĈQ, ĈQ
]
→ ĈQ .

Definition 2.1. A quiver with potential is a pair (Q,W ) where Q is a quiver without loops and 2-cycles
and W is a potential on Q. The Jacobian algebra ℘̂(Q,W ) is the algebra

℘̂(Q,W ) = ĈQ
/
〈∂aW | a ∈ Q1〉.

We can generalise this definition slightly by allowing frozen vertices.

Definition 2.2. An ice quiver with potential is a triple (Q,W,F ) where (Q,W ) is a quiver with potential,
and F is a subset of Q0 (the elements of F are called frozen vertices). Call QF the set of arrows of Q
that start and end at a frozen vertex. The frozen Jacobian algebra ℘̂(Q,W,F ) is the algebra

℘̂(Q,W,F ) = ĈQ
/
〈∂aW | a ∈ Q1 \QF 〉.

In other words, we do not take derivatives with respect to arrows between the frozen vertices.

Given an ice quiver with potential (Q,W,F ), one can construct a quiver with potential (Q,W ) as
follows. Set Q to be the quiver obtained from Q by removing the frozen vertices and all adjacent arrows,

and define W to be the image of W under the quotient map ĈQ→ ĈQ. Then we have ℘̂(Q,W,F )/ 〈F 〉 ∼=
℘̂(Q,W ), where 〈F 〉 is the ideal generated by the sum of the idempotents corresponding to vertices in F .

If W is finite, we can also define a non-completed Jacobian algebra ℘(Q,W ) by the same construction
without all the completions. In this article, the quivers with potential (Q,W ) which appear have the
property that the completed and non-completed Jacobian algebras are isomorphic. In the rest of this
section, we lay the ground for proving this. Let (Q,W ) be a quiver with finite potential. There is a
canonical map ℘(Q,W )→ ℘̂(Q,W ), but this map is in general neither injective nor surjective.

Proposition 2.3. If (Q,W ) is a quiver with finite potential such that 〈∂aW | a ∈ Q1〉 is an admissible
ideal of CQ, then the canonical map ℘(Q,W )→ ℘̂(Q,W ) is an isomorphism.

Proof. Call I = 〈∂aW | a ∈ Q1〉 ⊆ CQ and Î = 〈∂aW | a ∈ Q1〉 ⊆ ĈQ. Call J and Ĵ the arrow ideals of

CQ and ĈQ respectively. By assumption we have that there exists N � 0 such that JN ⊆ I and then

ĴN ⊆ Î. Observe that we have that ĈQ = CQ+ ĴN , and that JN = CQ ∩ ĴN . There is a commutative
diagram

JN
� � //� _

��

I
� � //� _

��

CQ // //
� _

��

℘(Q,W )

��

ĴN �
�

// Î �
�

// ĈQ // // ℘̂(Q,W ).
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We get an induced commutative diagram

I/JN �
�

//

��

CQ/JN // //

∼=
��

℘(Q,W )

��

Î/ĴN �
�

// ĈQ/ĴN // // ℘̂(Q,W ),

so it is enough to show that the map I/JN → Î/ĴN is an isomorphism. This map is injective since

JN = CQ ∩ ĴN . Moreover, Î ⊆ I + ĴN since I + ĴN is closed, so the map is surjective. �

Corollary 2.4. Let (Q,W,F ) be an ice quiver with potential. Suppose that W is finite and that every
sufficiently long path is equal in ℘(Q,W,F ) to a path that goes through a frozen vertex. Then ℘(Q,W ) ∼=
℘̂(Q,W ).

Proof. The assumption means exactly that the ideal
〈
∂aW | a ∈ Q

1

〉
is admissible. �

3. Postnikov diagrams

Let us recall the definition of a (k, n)-Postnikov diagram ([Pos06, §14], [BKM16, Definition 2.1]).

Definition 3.1. A (k, n)-Postnikov diagram D consists of n directed smooth curves (strands), in a disk
with n marked points on the boundary, clockwise labelled 1, 2, . . . , n. The strands are also labelled, with
strand i starting at i and ending at i+ k. The following axioms must hold:

(1) All crossings are transverse crossings between two distinct strands.
(2) There are finitely many crossings.
(3) Proceeding along a given strand, the other strands crossing it alternate between crossing it from

the right and from the left.
(4) If two strands cross at distinct points P1 and P2, then one strand is oriented from P1 to P2 and

the other from P2 to P1.

For axiom (3), we consider that strands cross at the boundary vertices in the obvious way. A Postnikov
diagram is defined up to isotopy that fixes the boundary. Two Postnikov diagrams are equivalent if they
are related by a sequence of twisting and untwisting moves as shown in Figure 1. The same moves with
opposite orientations are also allowed. The moves have to be executed inside a disk with no other strand
involved. A Postnikov diagram is reduced if no untwisting moves can be applied to it.

Figure 1. Twisting and untwisting moves in a Postnikov diagram.

A Postnikov diagram divides the disk into regions, whose boundaries consist of strand segments and
pieces of the boundary circle. There are three kinds of such regions, according to whether their boundary
is oriented clockwise, counterclockwise, or alternating in orientation (ignoring the boundary of the disk).

Each alternating region can be assigned a label I ∈
(

[n]
k

)
consisting of the names of the strands that

have this region to their left side. These labels are all distinct. Figure 2 shows a reduced Postnikov
diagram with labelled alternating regions. Not all Postnikov diagrams have rotational symmetry, but we
are particularly interested in symmetric ones. We call I = I(D) the set of labels corresponding to D.

Definition 3.2. Two sets I, J ∈
(

[n]
k

)
are said to be noncrossing or weakly separated (see [Pos06, Def-

inition 3]) if there exist no cyclically ordered a, b, c, d ∈ [n] with a, c ∈ I \ J and b, d ∈ J \ I. We call
a collection of k-element subsets of [n] a noncrossing collection if its elements are pairwise noncrossing.
We call it a maximal noncrossing collection if it is maximal with respect to inclusion.



SELF-INJECTIVE JACOBIAN ALGEBRAS FROM POSTNIKOV DIAGRAMS 5

1

2

3

4

56

7

8

9 789 891

912

123

234

345

456

567

678

179

134467

178

124

457

147

127

145

478

Figure 2. A symmetric (3, 9)-Postnikov diagram.

Theorem 3.3. [OPS15, Theorem 11.1]. Maximal noncrossing collections of elements of
(

[n]
k

)
are precisely

sets of labels of alternating regions in reduced (k, n)-Postnikov diagrams.

Such collections are known to have k(n− k) + 1 elements (this was conjectured in [Sco06] and proved
in [OPS15, Theorem 4.7]). There is an explicit construction of a Postnikov diagram having a prescribed
maximal noncrossing collection as labels ([OPS15, §9]), and this turns out to be unique (up to equiva-
lence). So the datum of a Postnikov diagram D is equivalent to the datum of a maximal noncrossing
collection I.

Remark 3.4. The label of the alternating region adjacent to the boundary segment of the disk from i to
i+ 1 is the set {i− k + 1, . . . , i} for i ∈ [n].

For simplicity, we assume from now on that Postnikov diagrams are reduced. To a Postnikov diagram
D we can associate (see [BKM16, §3]) an ice quiver with potential (Q,W,F ) = (Q,W,F )(D) such that:

(1) Vertices of Q are elements of I(D).
(2) Arrows of Q correspond to intersection points of alternating regions, with orientation so that the

arrows “point in the same direction as the strands”, as illustrated in Figure 3.
(3) The potential W is given by the sum of cycles corresponding to the clockwise regions minus the

sum of the cycles corresponding to the counterclockwise regions.
(4) The frozen vertices are the boundary vertices, i.e. the vertices corresponding to the boundary

segments of the disk.

Notice that there is a natural embedding of Q in the disk. The assumption that D is reduced implies
that there are no 2-cycles in Q (which we require in our definition of ice quivers with potential).

Thus we define the frozen Jacobian algebra A = A(D) = ℘(Q,W,F ) (this is the dimer algebra A defined
in [BKM16]). It is proved in [BKM16, Lemma 12.1] that the algebra A is invariant up to isomorphism
under equivalence of Postnikov diagrams. Call e the idempotent of A given by the sum of the idempotents
corresponding to the frozen vertices of Q. Then eAe ⊆ A is an idempotent subalgebra isomorphic (see
Section 6) to the opposite of the algebra B we discuss in Section 5. The algebra eAe is the boundary
algebra studied in [BKM16], and the algebra B was introduced in [JKS16]. We are especially interested
in studying the algebra Λ = A/AeA. The latter is the Jacobian algebra ℘(Q,W ), where Q is the quiver
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Figure 3. The quiver associated to the Postnikov diagram in Figure 2.

obtained from Q by removing the frozen vertices and the adjacent arrows, and W is the image of W
under the corresponding quotient map CQ→ CQ (see Section 2).

We are interested in the case where the Postnikov diagram D is symmetric under a rotation in the
plane around the center of the disk. In particular, we consider invariance under ρ, the clockwise rotation
by 2πk/n. Since this notion is not invariant under isotopy, we call a Postnikov diagram symmetric if it
is equivalent to one which is invariant under ρ. Another way of thinking about a symmetric Postnikov
diagram is saying that it is equal (or isotopic) to the Postnikov diagram obtained by changing the labels
of the points on the disk, replacing every i with i+ k. In this case we have

Lemma 3.5. Let I be a maximal noncrossing collection in
(

[n]
k

)
. Then I = I+k if and only if there exists

a symmetric Postnikov diagram D with I = I(D).

Proof. If D is symmetric, it follows that if strand i crosses in order the strands i1, i2, . . . , il, then strand
i+ k crosses in order the strands i1 + k, i2 + k, . . . il + k. Thus I is the label of a region of D if and only
if I + k is.

Conversely, assume that I = I+k. We refer to [OPS15, §9] for the construction of a Postnikov diagram
D with I(D) = I. The construction proceeds by defining a 2-dimensional CW-complex Σ(I) whose vertex
set is I, embedding it in the plane, and constructing strands as zig-zag paths. It is enough to observe
that the images of the vertex sets of Σ(I) and of Σ(I + k) are related by rotation in the plane. This is
true since the map is as follows. One takes v1, . . . , vn to be the vertices of a convex n-gon in R2, and one
maps I to

∑
a∈I va. We can in particular choose the n-gon to be regular and centred at the origin, and

then the claim follows. �

Notice that D is symmetric if and only if Q is invariant under ρ. Moreover, ρ must in this case map
(counter-)clockwise cycles in Q to (counter-)clockwise cycles, so it maps W to itself, and so induces an
automorphism Ψ of A. Since ρ maps F to F , this induces an automorphism of Λ which we still denote
by Ψ.

We will need the following definition in Section 6.

Definition 3.6. [BKM16]. From the relations in the definition of A it follows that for any vertex I ∈ Q0,
the cyclic paths appearing in the potential and starting at I are equal to the same element in A. We
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denote this element by uI ∈ A, and define

u =
∑
I∈Q0

uI ∈ A.

Remark 3.7. It is easy to see that u ∈ Z(A).

4. Cluster tilting in 2-Calabi-Yau categories

Let C be a C-linear, Hom-finite triangulated category.

Definition 4.1. The category C is 2-Calabi-Yau if there is a functorial isomorphism

HomC(X,Y ) ∼= DHomC(Y,X[2]).

An object T ∈ C is cluster tilting if

addT = {X ∈ C | HomC(T,X[1]) = 0} .

We call a cluster tilting object T self-injective if EndC(T ) is a finite-dimensional self-injective C-algebra.
For convenience, we assume cluster tilting objects to be basic.

Let us recall some facts and fix some notation about self-injective algebras. Let Λ be a finite-
dimensional algebra, and let us fix a maximal set {e1, . . . , el} of orthogonal idempotents. Then Pi = Λei
is a projective indecomposable Λ-module, and Ii = D(eiΛ) is an injective indecomposable Λ-module. If
T =

⊕
Ti is a basic B-module for some algebra B, with indecomposable summands Ti, and Λ = EndB(T ),

then we choose Pi = HomB(Ti, T ) and Ii = DHomB(T, Ti).
An algebra Λ is self-injective if and only if there exists an automorphism ψ : Λ → Λ such that

Λψ ∼= DΛ as Λ−Λ-bimodules. This is called a Nakayama automorphism of Λ, and is unique up to inner
automorphisms. In this case, we have that

Pi ∼= Iσ(i)

as left Λ-modules for some permutation σ (i.e. Λei ∼= D(eσ(i)Λ)), and

Λψ ⊗Λ Pσ(i)
∼= Pi

for the same σ. This permutation does not depend on the choice of ψ, and is called the Nakayama
permutation.

Let us now fix a 2-Calabi-Yau category C. The following characterisation of self-injective cluster tilting
objects will be useful.

Proposition 4.2. [IO13, Proposition 3.6], [HI11b, Proposition 4.4]. Let T =
⊕l

i=1 Ti ∈ C be a cluster
tilting object, with indecomposable summands Ti. Then

(1) T is self-injective if and only if T ∼= T [2].
(2) In this case, the permutation σ defined by Tσ(i)

∼= Ti[2] is the Nakayama permutation of EndC(T ).

Proof. Part (1) is proved in [IO13]. For part (2), observe

Pi = Hom(Ti, T ) ∼= DHom(T, Ti[2]) ∼= DHom(T, Tσ(i)) = Iσ(i).

�

Now consider Λ = EndC(T ) as in Proposition 4.2, and fix an isomorphism ϕ : T → T [2]. Then define
an automorphism ψ : Λ→ Λ by

ψ(λ) = ϕ[−2] ◦ λ[−2] ◦ (ϕ[−2])
−1
.

Then we have

Proposition 4.3. The map ψ is a Nakayama automorphism of Λ.

Proof. First we define a left module morphism Λ → DΛ. The Serre functor [2] gives an isomorphism of
bifunctors

HomC(−, ?) ∼= DHomC(?,−[2]).

In our case this induces an isomorphism of vector spaces

Λ→ DHomC(T, T [2])

which we will denote by a 7→ a∗ for a ∈ Λ. Moreover, there is an isomorphism of vector spaces

DHomC(T, T [2])→ DΛ
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given by F 7→ F (ϕ ◦ −). Call m : Λ→ DΛ the composition of these, i.e.

m : a 7→ a∗(ϕ ◦ −)

for all a ∈ Λ. Let us check that m is a left module morphism. We have (λa)∗ = a∗(−◦λ) for λ, a ∈ Λ. So

λm(a) = a∗(ϕ ◦ − ◦ λ) = m(λa).

Let us prove that m is a right module morphism Λψ → DΛ. For a, b ∈ Λ, we have that

m(ab) = (ab)∗(ϕ ◦ −) = a∗(b[2] ◦ ϕ ◦ −).

The right action of Λ on DΛ is given by Fλ = F (λ ◦ −), so

(m(a))λ = a∗(ϕ ◦ λ ◦ −).

On the other hand,

m(a ∗ψ λ) = m(a ◦ ϕ[−2] ◦ λ[−2] ◦ ϕ−1[−2]) =

= a∗((ϕ[−2] ◦ λ[−2] ◦ ϕ−1[−2])[2] ◦ ϕ ◦ −) =

= a∗(ϕ ◦ λ ◦ −) = (m(a))λ,

which proves the claim. �

5. The boundary algebra B

In this section we discuss an algebra B = B(k, n) which was introduced in [JKS16] in order to categorify
the cluster algebra structure of the coordinate ring of the Grassmannian Grk(Cn). This algebra also plays
a prominent role in [BKM16].

Let us consider a Z/nZ-grading on C[x, y] by deg x = 1 and deg y = −1. Thus the element xk − yn−k
is homogeneous of degree k, and we can consider graded modules over R = C[x, y]/(xk − yn−k). Denote

degree shift on modZ/nZR by (1), and define B to be the algebra

B = End
Z/nZ
R

 ⊕
i∈Z/nZ

R(i)

 .

We can realise B as a quiver algebra as follows. Consider the quiver with vertex set [n], and arrows
xi : i− 1→ i and yi : i→ i− 1 for each i ∈ [n]. Call x =

∑
i xi and y =

∑
i yi. Then B is isomorphic to

the quotient of the path algebra over C of this quiver by the ideal generated by the relations xy = yx and
xk = yn−k. Thus B is a quotient of the preprojective algebra of type Ãn−1 by the relation xk = yn−k.

We also need to introduce the completed algebra B̂. This is the completion of B with respect to

the ideal (x, y) [JKS16, Remarks 3.1, 3.2 and 3.4]. Similarly, we write R̂ = C[[x, y]]/(xk − yn−k). The
completion will turn out not to play an important role for us, due to Proposition 2.3.

The categories modB and modZ/nZR are equivalent, and similarly for B̂ and R̂. We can consider

the category CM(B) of Cohen-Macaulay modules over B and the category CMZ/nZ(R) of graded Cohen-
Macaulay modules over R. These also turn out to be equivalent (cf. [JKS16, Corollary 3.7]), and again the

same holds for the completed algebras. The category CM(B̂) was studied in [JKS16], where the authors

show that the Frobenius category SubQk used in [GLS08] is a quotient of CM(B̂) by one indecomposable

projective object. In this way, many facts about CM(B̂) and its stable category CM(B̂) can be deduced
from what is known about SubQk. In particular, we have

Proposition 5.1. The category CM(B̂) is 2-Calabi-Yau.

Proof. This follows from [JKS16, Corollary 4.6] and [GLS08, Proposition 3.4]. �

Now we describe some additional properties of B, which are insensitive to the completion. We refer
to [JKS16] for a detailed discussion of the relationship between B and B̂.

There is an automorphism Φ : B → B given by mapping ei 7→ ei+k, xi 7→ xi+k and yi 7→ yi+k. The
same function is also an automorphism Φ of Bopp.

The center of B is Z = C[t] ⊆ B, where t = xy. The algebra B is finitely generated over Z, and
the category CM(B) consists exactly of the finitely generated B-modules that are free over Z. Such a
module corresponds to a representation of the quiver of B with at every vertex a free Z-module of the
same rank ([JKS16, §3]). Following [JKS16, Definition 3.5], we say that a B-module has rank d if it has
rank nd as a Z-module. Rank is additive over short exact sequences (cf. [JKS16, §3]), so in particular
rank 1 modules are indecomposable.
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Definition 5.2. [JKS16, Definition 5.1]. For each I ∈
(

[n]
k

)
, define the B-module LI of rank 1 by the

following representation of the quiver: at every vertex i we have a copy Ui of Z, and

xi : Ui−1 → Ui acts as multiplication by 1 if i ∈ I, and by t else,

yi : Ui → Ui−1 acts as multiplication by t if i ∈ I, and by 1 else.

Similarly, the center of B̂ is Z = C[[t]], and all the above holds for B̂. In particular, we will use the

notation Z for the center and LI for the modules defined above, both for B and B̂.
Such modules can be represented by lattice diagrams as in Figure 4, where the black dots on column i

represent the monomials 1, t, t2, . . . in the corresponding Ui, the action of xi (yi) is denoted by a rightward
(leftward) arrow labelled i, and the edges of the figure are identified along the dotted lines. The label I
can be read off from the arrows pointing to the right on the top profile of the diagram.

0 1 2 3 4 5 6 7 8 9

1

2

2

3

3

4

4

5©

5 6 7

8

9

9

8 9

3 4©

6 7©

Figure 4. The module L457 in the case k = 3, n = 9.

Every rank 1 module in CM(B) (or CM(B̂)) is of this form for some (unique) set I ∈
(

[n]
k

)
([JKS16,

Proposition 5.2]).

Definition 5.3. From the definition of the modules LI , it is clear that the effect of twisting by Φ is the
same as relabelling the columns of the lattice diagram. In other words, we have that LI ∼= ΦLI+k in a
canonical way. We will denote by ϕI : LI → ΦLI+k this canonical isomorphism (given by identifying
lattice diagrams).

Remark 5.4. There are some important differences between CM(B) and CM(B̂). In both categories,
we have for every i ∈ [n] that Pi ∼= Ii+k ∼= Li+1,...,i+k, cf. [BKM16, Remark 7.2]. These are the only

indecomposable projective objects in CM(B̂). Observe that we do not know whether this holds in CM(B),
cf. [JKS16, paragraph after Remark 3.4].

We need some notation about morphisms between the modules LI (cf. [BKM16, Lemma 7.4]). The
spaces HomB(LI , LJ) (respectively HomB̂(LI , LJ)) are free modules of rank 1 over C[t] (respectively
C[[t]]), generated by the morphism gJI : LI → LJ corresponding to an embedding of lattice diagrams
such that dimC coker(gJI) is minimal. The map gJIt

N corresponds to the embedding where the diagram
of LI is shifted downwards N steps.

There is a functor F on CM(B) given by M 7→ ΦM on objects and f 7→ f on morphisms. We have
that F(LI) ∼= LI−k via the canonical isomorphism ϕI−k. It is clear from the definition of the morphisms
gJI that F(gJI) = gJI = ϕ−1

J ◦ gJ−k,I−k ◦ ϕI . Notice that F is the identity on morphisms, but the map
gJI changes name since we have relabelled the basis elements of both domain and codomain. We will
sometimes treat the canonical isomorphisms as identifications and write F(gJI) = gJ−k,I−k. Observe that

via the equivalence CM(B)→ CMZ/nZ(R), the functor F is mapped to degree shift by −k (cf. [BBGE18,

Proposition 3.15]). Again, we define a functor on CM(B̂) in the same way, and call it F as well.

Definition 5.5. We denote by B the full additive subcategory of CM(B̂) generated by
{
LI | I ∈

(
[n]
k

)}
.

Even though CM(B̂) is triangulated, we remark that B is not a triangulated subcategory of CM(B̂).

However, we can explicitly describe the Serre functor [2] of CM(B̂) (see also [BBGE18, Proposition 3.15]).

It turns out that inside CMZ/nZ(R) there is an isomorphism of functors [2] ∼= (−k), which in our setting
translates into the following:

Theorem 5.6 ([DL16, Theorem 3.22]). There is an isomorphism of functors F ∼= [2] on CM(B̂).
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Remark 5.7. It follows in particular that B is closed under the Serre functor [2].

Remark 5.8. The statement that LI ∼= LI+k[2] appears also in [BB17, Proposition 2.7], and is implicitly
used in [JKS16, §7] in some specific cases. For our purposes, we will only need that [2] ∼= F as functors
on B. We provide a direct proof of the latter fact.

Proof that F ∼= [2] on B. Let us denote by [k] the interval {1, 2, . . . , k} ⊆ [n], and for x ∈ [n] let us denote
by x+ [k] the cyclic interval {x+ 1, . . . , x+ k} ⊆ [n].

Let us first prove that for every I ∈
(

[n]
k

)
, there is an exact sequence in CM(B̂)

0 // LI+k
f
//
⊕
v∈V

Lv+[k]
∂ //

⊕
u∈U

Lu+[k]
h // LI // 0

where U = {u 6∈ I | u+ 1 ∈ I} and V = {v ∈ I | v + 1 6∈ I}. The map f is given by

f =
(
gv+[k],I+k

)
v∈V ,

the map h is given by

h =
(
gI,u+[k]

)
u∈U ,

and the map ∂ is given by

∂ =
(
∂uv
)
u∈U,v∈V

with

∂uv =


gu+[k],v+[k] if u is the predecessor of v in the cyclic order on U ∪ V ;

−gu+[k],v+[k] if u is the successor of v in the cyclic order on U ∪ V ;

0 otherwise.

In particular we mean that ∂ = 0 if LI is projective. To prove the assertion that the above sequence is
exact, observe that ⊕

v∈V
Lv+[k]

∂ //
⊕
u∈U

Lu+[k]
h // LI // 0

is a projective presentation of LI (cf. [JKS16, Proposition 5.6]), and similarly

0 // LI+k
f
//
⊕
v∈V

Lv+[k]
∂ //

⊕
u∈U

Lu+[k]

is an injective presentation of LI+k.
Now let us consider two k-element subsets I, I ′, and the corresponding exact sequences. We will

construct a commutative diagram

0 // LI+k
f
//

gI′+k,I′+k

��

⊕
v∈V

Lv+[k]
∂ //

N

��

⊕
u∈U

Lu+[k]
h //

M

��

LI //

gI′I

��

0

0 // LI′+k
f ′
//
⊕
v′∈V ′

Lv′+[k]
∂′
//
⊕
u′∈U ′

Lu′+[k]
h′
// LI′ // 0.

By the definition of the triangulated structure on CM(B̂), this means that gI′+k,I+k[2] = gI′I ∼=
F(gI′+k,I+k). Since all morphism spaces in B are generated by maps of this form (in particular, recall
that gII = idLI

), this will be enough to prove the assertion that [2] ∼= F on B.
Let us fix some more notation to simplify the construction. We will drop the +[k] in indices to avoid

clogging the formulas. For instance, we will write Lu for Lu+[k] and similarly guI for gu+[k],I . For the
cyclic orders on U ∪ V and on U ′ ∪ V ′, we write s and p for the successor and predecessor functions.

Let us fix u ∈ U . We write (LI′)u for the Z-module of rank 1 corresponding to vertex u inside LI′ .
The generator of (LI′)u as a Z-module is in the image via h′ of either one or two of the Lu′ . If there is
only one such Lu′ , then define u′(u) = u′. If there are two such Lu′

1
and Lu′

2
(this happens if and only

if |U ′| ≥ 2 and u ∈ V ′), with u′1 < u < u′2, then define u′(u) = u′1. In other words, u′(u) is the unique
element of U ′ such that p(u′(u)) < u ≤ s(u′(u)). By construction we have gI′u′(u) ◦ gu′(u)u = gI′u. We

define d(u) by the equation gI′ut
d(u) = gI′I ◦ gIu.

Dually, let us fix v′ ∈ V ′. The generator of (LI+k)v′+k as a Z-module is mapped via f to a Z-module
generator in either one or two of the Lv. If there is only one such Lv, then define v(v′) = v. If there
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are two such Lv1 and Lv2 (this happens if and only if |V | ≥ 2 and v′ ∈ U), with v1 < v′ < v2, then
define v(v′) = v2. In other words, v(v′) is the unique element of V such that p(v(v′)) ≤ v′ < s(v(v′)).

By construction we have gv′v(v′) ◦ gv(v′),I+k = gv′,I+k. We define d(v′) by the equation gv′,I+kt
d(v′) =

gv′,I′+k ◦ gI′+k,I+k.
Now we can define maps M :

⊕
u∈U Lu →

⊕
u′∈U ′ Lu′ and N :

⊕
v∈V Lv →

⊕
v′∈V ′ Lv′ by setting

Mu′u =

{
gu′ut

d(u), if u′ = u′(u);

0, otherwise

and

Nv′v =

{
gv′vt

d(v′), if v = v(v′);

0, otherwise.

Let us check that the right square commutes, the left square being similar. We have

(h′ ◦M)u =
∑
u′∈U ′

gI′u′ ◦Mu′u = gI′u′(u) ◦ gu′(u)ut
d(u) =

= gI′ut
d(u) = gI′I ◦ gIu =

= (gI′I ◦ h)u.

Let us now consider the middle square. We have

(M ◦ ∂)u′v = Mu′p(v) ◦ gp(v)v −Mu′s(v) ◦ gs(v)v

and
(∂′ ◦N)u′v = gu′s(u′) ◦Ns(u′)v − gu′p(u′) ◦Np(u′)v.

There are four cases to consider.
Case 1. Let us first assume that u′(p(v)) = u′(s(v)) = u′. In this case we have

(M ◦ ∂)u′v = gu′p(v) ◦ gp(v)vt
d(p(v)) − gu′s(v) ◦ gs(v)vt

d(s(v)).

In particular, (M ◦ ∂)u′v = (ta − tb)gu′v for some a, b ≥ 0. From h′ ◦M ◦ ∂ = 0 we get then that a = b
and thus that (M ◦ ∂)u′v = 0. Now since p(u′) < p(v) ≤ s(u′) and p(u′) < s(v) ≤ s(u′), we must have
that either v(p(u′)) = v(s(u′)) = v or v(p(u′)) 6= v 6= v(s(u′)). In the first case,

(∂′ ◦N)u′v = gu′s(u′) ◦ gs(u′)vt
d(s(u′)) − gu′p(u′) ◦ gp(u′)vt

d(p(u′))

and as above we can argue that this is 0. In the second case, (∂′ ◦N)u′v = 0− 0 directly.
Case 2. In a similar way we can argue that (M ◦ ∂)u′v = (∂′ ◦N)u′v = 0 whenever u′(p(v)) 6= u′ 6=

u′(s(v)).
Case 3. Let us now assume that u′(p(v)) = u′ 6= u′(s(v)). This means that p(u′) < p(v) ≤ s(u′) < s(v),

so we obtain that v(s(u′)) = v 6= v(p(u′)). Thus

(M ◦ ∂)u′v = gu′p(v) ◦ gp(v)vt
d(p(v))

and
(∂′ ◦N)u′v = gu′s(u′) ◦ gs(u′)vt

d(s(u′)).

We need to make some observations (cf. [BB17, Proposition 2.7] for a pictorial interpretation). First,
the maps gIv ◦ gv,I+k are all equal, and we can call them ιI . The maps gIu ◦ gu,I+k are also all equal to
ιI . Defining ιI′ in the same way, we remark that gI′I ◦ ιI = ιI′ ◦ gI′+k,I+k.

With these observations, we can write

gI′u′ ◦ (M ◦ ∂)u′v ◦ gv,I+k = gI′u′ ◦ gu′p(v) ◦ gp(v)vt
d(p(v)) ◦ gv,I+k =

= gI′I ◦ gIv ◦ gv,I+k =

= gI′I ◦ ιI =

= ιI′ ◦ gI′+k,I+k =

= gI′u′ ◦ gu′,I′+k ◦ gI′+k,I+k =

= gI′u′ ◦ gu′s(u′) ◦ gs(u′)vt
d(s(u′)) ◦ gv,I+k =

= gI′u′ ◦ (∂′ ◦N)u′v ◦ gv,I+k.

Since both (M ◦ ∂)u′v and (∂′ ◦N)u′v are equal to a power of t times gu′v, we conclude that they must
be equal.

Case 4. The case u′(p(v)) 6= u′ = u′(s(v)) is similar to Case 3. We conclude that the middle square
and thus the whole diagram commutes, and so we are done. �
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6. Cluster tilting in CM(B̂)

There is a strong relationship between combinatorics of Postnikov diagrams and homological algebra
in CM(B̂). We are interested in cluster tilting objects in the Frobenius category CM(B̂) and in the

2-Calabi-Yau category CM(B̂), and these are the same objects. To be more precise, there is a bijection

between isomorphism classes of basic cluster tilting objects in CM(B̂) and in CM(B̂), given by adding or
removing the projective indecomposables.

The noncrossing property introduced in Section 3 corresponds to Ext-vanishing in CM(B̂).

Proposition 6.1. [JKS16, Proposition 5.6]. Let I, J ∈
(

[n]
k

)
. Then Ext1

B(LI , LJ) = 0 if and only if I
and J are noncrossing.

Let D be a reduced (k, n)-Postnikov diagram, and let I = I(D). Define the B̂-module T by

T =
⊕
I∈I

LI .

We also denote by T the B-module defined in the same way. This abuse of notation is justified by the
fact that the stable endomorphism algebra of T is the same regardless of the completion, as we will see.

The following theorem was proved in [JKS16].

Theorem 6.2. For any reduced (k, n)-Postnikov diagram, the module T defined above is a cluster tilting

object in CM(B̂).

Proof. Since I is a maximal noncrossing collection, it follows by Proposition 6.1 that T is a maximal rigid
object in CM(B̂). Since CM(B̂) is known to have at least one cluster tilting object, this is equivalent to
T being cluster tilting (cf. [JKS16, Remark 4.8]). �

We remark that T is also a maximal rigid object in CM(B), but we do not know whether it is actually
cluster tilting.

Remark 6.3. Any maximal noncrossing collection contains the n cyclic intervals of length k. Remark 3.4
says that the labels of the n boundary regions of a Postnikov diagram are precisely these n cyclic intervals.
Indeed, any cluster tilting object in CM(B̂) has as summands the n indecomposable projective-injective
objects, which are labelled by such intervals.

Theorem 6.4. [BKM16, Theorem 10.3 and Theorem 11.2]. Let D be a reduced (k, n)-Postnikov diagram,
let T be as above and let A(D) = ℘(Q,W,F ) be as in Section 3. Then there exists a unique isomorphism
A(D)→ EndB(T ) such that the vertex I of Q is mapped to idLI

and any arrow I → J in Q is mapped to

the morphism gJI : LI → LJ . Moreover, this induces an isomorphism Â(D) = ℘̂(Q,W,F )→ EndB̂(T ).

We call g : A→ EndB(T ) this isomorphism. In particular, the frozen vertices of Q correspond to the
indecomposable projective B-modules, and Bopp is identified with eAe ⊆ A ([BKM16, Corollary 10.4]).
In this article, we focus on the study of the algebra Λ = A/AeA. This corresponds to quotienting out
endomorphisms of T factoring through its projective summands, thus moving to the stable category.

Lemma 6.5. The isomorphism g : A → EndB(T ) induces an isomorphism g : A/AeA → EndB(T ). In

the same way, the isomorphism Â ∼= EndB̂(T ) induces an isomorphism Â/ÂeÂ ∼= EndB̂(T ).

Proof. We give the proof for the non-complete case; the other case is similar. We have T ∼= T ′⊕P , where
P is the sum of the indecomposable projective B-modules Pi. Call E the subset of EndB(T ) consisting
of maps that factor through P . There is a commutative diagram

0 // AeA //

��

A //

g

��

A/AeA

��

// 0

0 // E // EndB(T ) // EndB(T ) // 0

where the two leftmost vertical maps are isomorphisms, thus the claim is proved. �

The following results will justify our claims that the completion does not play a big role in our setting.

Proposition 6.6. We have A/AeA ∼= ℘̂(Q,W ) ∼= Â/ÂeÂ.
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Proof. Let us first prove the first isomorphism. By Corollary 2.4, it is enough to prove that every
sufficiently long path in Q is equivalent in A to a path through a frozen vertex. By [BKM16, Corollary
9.4], we have that a basis of eJAeI is given by the set{

uNpIJ | N ∈ N
}

where u is as in Definition 3.6 and pIJ is a chosen path from I to J that is not equivalent to a path
containing a cycle. There is a unique equivalence class of paths from I to J containing such an element.
This basis is mapped via g to the basis {

tNgJI | N ∈ N
}

of HomB(LI , LJ).
Now observe that paths of a fixed degree in u have bounded length, so for any d we can find a path

with degree larger than d. Translated into maps from LI to LJ , it is then enough to prove that every
map of the form gJIt

N for N � 0 factors through a map gPI for a projective LP . Given the description
of maps of the form gJIt

N as embeddings of lattice diagrams, this is clear.
To conclude, observe that the above argument implies that the two-sided ideal ÂeÂ is closed in Â, so

the second isomorphism follows. �

From Theorem 6.4, Lemma 6.5 and Proposition 6.6, we get:

Corollary 6.7. There is an algebra isomorphism

EndB(T ) ∼= EndB̂(T ).

In view of Corollary 6.7, we can essentially ignore the completions. In particular, all statements about
T that depend on the triangulated or Calabi-Yau structure of CM(B) (such as mutation and suspensions)

can be carried out in CM(B̂) instead, without affecting EndB(T ) and therefore Λ.

The following results about CM(B̂) coming from the combinatorics of Postnikov diagrams still hold
true for CM(B), if we replace “cluster tilting” by “maximal rigid”.

Lemma 6.8. For any fixed (k, n) there is a bijection{
Basic cluster tilting objects in CM(B̂)

that lie in B

}
oo //


Maximal noncrossing

collections of

elements of
(

[n]
k

)
 .

Proof. Since the modules LI are indecomposable, they are precisely the indecomposable objects in B. It
follows that maximal rigid objects in CM(B̂) that lie in B correspond precisely to maximal noncrossing
collections. �

Combining this with Theorem 3.3 we get

Proposition 6.9. Basic cluster tilting objects in CM(B̂) (respectively in CM(B̂)) that lie in B are
precisely those contructed as above from reduced (k, n)-Postnikov diagrams.

There are various notions of mutation for the various objects we are considering, and in a sense they
all correspond to each other. The rest of this section is devoted to making this statement a bit more
precise.

There is a well-defined mutation of cluster tilting objects in CM(B̂) [JKS16, Remark 4.8]. Namely, if
X ⊕ T is a cluster tilting object and X is indecomposable nonprojective then there is a unique indecom-
posable nonprojective Y 6∼= X such that Y ⊕T is cluster tilting. Now if T is cluster tilting in CM(B̂) and
moreover T ∈ B, then T =

⊕
I∈I LI for some maximal noncrossing collection I. Suppose that I ∈ I is not

a cyclic interval of [n] (i.e. not the label of a projective B̂-module). Then, under some condition, there
is a unique I ′ by which we can replace I so that I \ {I} ∪ {I ′} is a maximal noncrossing collection. The
precise description of I ′ is rather cumbersome, and can be found for instance in [OPS15, Theorem 1.4].
If we start from the cluster tilting object T =

⊕
J∈I LJ ∈ B, and we mutate it at LI , the new cluster

tilting object will be
⊕

J∈I′ LJ by Proposition 6.9.
There is a combinatorial interpretation of mutation of cluster tilting objects (or more directly of

maximal noncrossing collections) in terms of Postnikov diagrams. This is given by the notion of geometric
exchange on a Postnikov diagram, i.e. applying the local operation depicted in Figure 5, followed by
untwisting and boundary untwisting moves to make the new Postnikov diagram reduced.

Notice that the labels of vertices do not change except at the chosen vertex. The label I ′ is precisely
the only k-element set which is not I which makes the collection of labels noncrossing. The effect on the
corresponding quiver is almost Fomin-Zelevinsky mutation. The step of removing any new 2-cycles must
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I I ′

Figure 5. Geometric exchange and the corresponding operation on the quiver.

be replaced as follows: remove any new 2-cycle consisting of non-boundary arrows, then for every 2-cycle
consisting of a boundary arrow and a non-boundary arrow, remove the boundary arrow and treat the
non-boundary arrow as a new boundary arrow. This corresponds to the effect of applying a boundary
untwisting move, as opposed to a “normal” untwisting move (cf. [BKM16, Lemma 12.1]). This mutation
rule also coincides with mutation of ice quivers with potential presented in [Pre18]. If we restrict our
attention to the quiver Q, this difference disappears (since arrows between frozen vertices are not arrows
in Q).

By the above discussion, the notions of mutation of Postnikov diagrams (i.e. geometric exchange), of

cluster tilting objects in CM(B̂), and of quivers with potential all correspond to each other when they
make sense. We remark that sometimes mutation of a cluster tilting object in B will produce a cluster
tilting object which does not lie in B, and that will happen precisely when geometric exchange is not
possible (because the chosen vertex does not have valency 4). The correspondence between mutation of
cluster tilting objects and quivers with potential is a widespread phenomenon, see for instance [BIRS11].

In particular, we can read off mutation of cluster tilting objects in CM(B̂) (respectively in CM(B̂))
from the Postnikov diagram D, from the quiver Q, or from the collection I. In Figures 6 and 7, we
illustrate the geometric exchange at 134 of the Postnikov diagram of Figure 2 and the corresponding
mutation of the quiver with potential. Vertex 134 is mutated to 245. We can deduce that mutation is
transitive on cluster tilting objects that lie in B:

Theorem 6.10. [Pos06, Theorem 13.4] Any two reduced (k, n)-Postnikov diagrams are related by a
sequence of geometric exchange, twisting and untwisting moves.

Corollary 6.11. Any two basic cluster tilting objects in CM(B̂) (or CM(B̂)) that lie in B are related by
a sequence of mutations.

Remark 6.12. Given two cluster tilting objects as above T, T ′, one can go from T to T ′ via a sequence
of quiver mutations at vertices of valency 4. Applying arbitrary mutations to the quiver can cause
indecomposable summands of rank ≥ 2 to appear in the cluster tilting object.

In [HI11b], the authors discuss the concept of planar mutation, which is a more restrictive notion than
that of quiver mutation. It has the property of preserving planarity. Their definition allows mutation
at internal vertices of valency 4, or at boundary vertices of valency at most 4. Mutation at an internal
vertex of valency 4 of Q is precisely what is allowed by geometric exchange, but for boundary vertices
the situation is different. Namely, we can mutate at the boundary vertices of Q if and only if they have
valency 4 as vertices of Q, which is a stronger condition than having valency at most 4 in Q.

7. Self-injective cluster tilting objects in CM(B)

We are now ready to state our main result. In this section, let D be a reduced (k, n)-Postnikov diagram.

Lemma 7.1. The Postnikov diagram D is symmetric if and only if ΦT ∼= T as left B-modules.

Proof. Assume that D is symmetric. As left B-modules, we have

T =
⊕
I∈I

LI ∼=
⊕
I∈I

ΦLI+k =
⊕
I∈I+k

ΦLI =
⊕
I∈I

ΦLI = ΦT

where we have used the isomorphism of Definition 5.3 and Lemma 3.5. On the other hand, there can be
an isomorphism

⊕
I∈I ΦLI+k ∼=

⊕
I∈I+k ΦLI+k only if I = I + k, which by Lemma 3.5 implies that D is

symmetric. �



SELF-INJECTIVE JACOBIAN ALGEBRAS FROM POSTNIKOV DIAGRAMS 15

1

2

3

4

56

7

8

9 789 891

912

123

234

345

456

567

678

179

467

178

124

457

147

127

145

478

245

Figure 6. The geometric exchange at 134 of the Postnikov diagram of Figure 2.
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Figure 7. The quiver µ134(Q), where Q is the quiver of Figure 3.
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In other words, FT ∼= T , and recall that F = [2] on B ⊆ CM(B̂). If we call ϕ : T → FT the canonical
isomorphism with components ϕI : LI → Φ(LI+k) as in Definition 5.3, then there is an automorphism ψ
of EndB(T ) given by

ψ : a 7→ ϕ ◦ a ◦ ϕ−1.

By Remark 5.4, F sends projectives to projectives, so the automorphism ψ induces an automorphism of
EndB(T ), which we still denote by ψ.

Theorem 7.2. Let D be a reduced (k, n)-Postnikov diagram. Then D is symmetric if and only if the
B-module T ∈ CM(B) is self-injective. In this case the Nakayama permutation is given by σ(I) = I − k,
and a Nakayama automorphism given by ψ.

Proof. By Corollary 6.7, T is self-injective as a B-module if and only if it is self-injective as a B̂-module.
Thus we can work in CM(B̂), where we have a 2-Calabi-Yau structure. By Lemma 7.1 and Theorem
5.6, we have that D is symmetric if and only if T ∼= ΦT ∼= T [2]. Moreover, T ∼= T [2] if and only if T is
self-injective, by Proposition 4.2. In this case, we have LI [2] ∼= LI−k, which gives σ : I 7→ I − k. Since
[2] = F on the modules LI , the map ψ we have defined is exactly the map in the statement of Proposition
4.3. Thus we conclude that ψ is a Nakayama automorphism of EndB̂(T ) ∼= EndB(T ). �

Corollary 7.3. Let D be a reduced (k, n)-Postnikov diagram. Then D is symmetric if and only if (Q,W )
is a self-injective quiver with potential. In this case, the Nakayama permutation is σ(I) = I − k, induced
by rotation by 2πk/n, and a Nakayama automorphism of ℘(Q,W ) is given by Ψ (see Section 3).

Proof. By Theorem 6.4 and Lemma 6.5 we have that EndB(T ) ∼= ℘(Q,W ). The functor F on CM(B)
sends LI to LI−k and gJI to gJ−k,I−k, so the automorphism ψ of Λ defined by twisting with the canonical
isomorphism ϕ : T → FT corresponds to the quiver automorphism sending vertex I to I − k and an
arrow I → J to an arrow I − k → J − k. Thus the action of ψ on the quiver coincides with that of ρ,
which in turn is the action on ℘(Q,W ) of the automorphism Ψ. �

Remark 7.4. Strictly speaking, the rotation ρ acts onD only ifD is chosen appropriately in the equivalence
class modulo isotopy. In other words, the Nakayama automorphism acts by ρ on Q provided that Q is
embedded in the plane with the embedding of Lemma 3.5.

Remark 7.5. The automorphism ψ of EndB(T ) induces the automorphism Φ−1 on Bopp ⊆ EndB(T ).

Definition 7.6. [HI11b, Definition 4.1]. Let (Q,W ) be a self-injective quiver with potential constructed
from a reduced (k, n)-Postnikov diagram. In this case, the Nakayama permutation acts on vertices by
σ : I 7→ I − k. Call (I) =

{
σj(I) | j ∈ Z

}
the orbit of I. Suppose that there are no arrows between any

two vertices in (I). Then we define the mutation at (I) µ(I)(Q,W ) to be the composition of mutations
at the vertices in (I), applied to Q. It is well defined since, by the assumption, it does not depend on the
order of composition.

The following theorem is stated in greater generality in [HI11b].

Theorem 7.7. [HI11b, Theorem 4.2]. If (Q,W ) is self-injective and I satisfies the above condition
(allowing µ(I) to be defined), then µ(I)(Q,W ) is a self-injective quiver with potential with the same
Nakayama permutation.

In our setting, this result can be deduced immediately from Corollary 7.3 if I is mutable. Indeed,
applying geometric exchange along a mutable orbit of ρ produces another symmetric (k, n)-Postnikov
diagram, so the corresponding quiver is again self-injective with the same permutation.

Remark 7.8. By Theorem 6.10, any two symmetric reduced (k, n)-Postnikov diagrams are related by a
sequence of geometric exchanges. However, we do not know whether they are related by a sequence of
geometric exchanges along Nakayama orbits.

8. Cuts of self-injective quivers with potential

In this section we study the 2-representation finite algebras one can get from a self-injective quiver
with potential. We want to use the results of [HI11b], so again we need our Jacobian algebras to be
completed.

Definition 8.1. For a quiver with potential (R,P ), a cut is a set of arrows which contains exactly one
arrow from every cycle in P . The quiver (R,P ) has enough cuts if every arrow is contained in a cut.

We can define a grading on ℘̂(R,P ) by giving degree 1 to the arrows in a cut C of R, since by definition
the potential is then homogeneous of degree 1. The degree 0 part of ℘̂(R,P ) is denoted ℘̂(R,P )C and
called the truncated Jacobian algebra of ℘̂(R,P ) associated to C.
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Figure 8. A cut on a symmetric (3, 9)-Postnikov diagram.

Recall that an algebra is called 2-representation finite if it has global dimension at most 2 and admits
a cluster tilting module (cf. [Iya08]). One reason to look at truncated Jacobian algebras is the following
result (see for instance [HI11b] for the definition of 3-preprojective algebras).

Theorem 8.2. [HI11b, Theorem 3.11]. For any self-injective quiver with potential (R,P ) and cut C, the
truncated Jacobian algebra ℘̂(R,P )C is 2-representation finite. All basic 2-representation finite algebras
arise in this way. Moreover, the 3-preprojective algebra of ℘̂(R,P )C is isomorphic to ℘̂(R,P ).

Now if D is a symmetric Postnikov diagram, by Theorem 7.2 the associated Jacobian algebra Λ =
℘(Q,W ) is self-injective, and by Proposition 6.6 it is isomorphic to ℘̂(Q,W ). So for any cut C of (Q,W )
the truncated Jacobian algebra ΛC is 2-representation finite with 3-preprojective algebra isomorphic to
Λ.

We need some notation for regions determined by Postnikov diagrams. A boundary region is a region
whose boundary is alternating (ignoring the boundary of the disk) and has a piece of the boundary circle
as part of its boundary. These are precisely the regions labeled by cyclic intervals. A cyclic boundary
region is a cyclic region which shares an edge with a boundary region. On the level of Postnikov diagrams,
a cut of (Q,W ) is a set C of (non-boundary) crossings of strands such that

(1) for every crossing c ∈ C, the two cyclic regions adjacent to c are not both cyclic boundary regions,
and

(2) every cyclic region which is not a cyclic boundary region is adjacent to exactly one crossing in C.

In Figure 8 we illustrate such a cut, and in Figure 9 we show the corresponding cut on the quiver Q
(dotted arrows are arrows in the cut).

There is a notion of mutation of cuts that corresponds exactly to taking the quiver of the corresponding
2-APR tilt of Λ (see [HI11b] for details).

Definition 8.3. [HI11b, Definition 6.10]. Let (R,P ) be a quiver with potential with a cut C. A vertex
x of R is a strict source if all arrows ending at x belong to C and all arrows starting at x do not belong
to C. For a strict source x, call the cut-mutation µ+

x (C) of R1 the set of arrows we get by removing all
arrows ending at x from C, and adding all arrows starting at x to C. Dually, we define a strict sink and
the cut-mutation µ−x (C).
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Figure 9. A cut on the self-injective quiver with potential corresponding to the Post-
nikov diagram of Figure 8.

It is clear that cut-mutation transforms strict sources into strict sinks and vice-versa.
For a quiver with potential (Q,W ) constructed from a Postnikov diagram, strict sources and strict

sinks are precisely alternating regions such that every second crossing (except those with a boundary
region) on their boundary is contained in the cut. Cut-mutation consists of replacing the crossings on
the boundary of such alternating regions with their complement (again, ignoring the crossings with a
boundary region). In Figures 10 and 11 we illustrate µ+

457(C) for the cut C of Figures 8 and 9.
Quivers with potential obtained from Postnikov diagrams are by definition planar in the sense of

[HI11b, Definition 9.1]. We illustrate one application.

Theorem 8.4. [HI11b, Theorem 9.2]. Let (R,P ) be a self-injective planar quiver with potential that has
enough cuts. Then all truncated Jacobian algebras ℘̂(R,P )C are iterated 2-APR tilts of each other. In
particular they are derived equivalent.

The assumption is satisfied in our setting:

Proposition 8.5. If (Q,W ) is a self-injective quiver with potential constructed from a symmetric Post-
nikov diagram, then (Q,W ) has enough cuts.

Proof. The planar embedding of Q can be taken to be a so-called isoradial embedding ([BKM16, Theorem
5.7]). This means that all the faces (i.e. cycles in W ) of Q are polygons inscribed in a unit circle. Then
proceed as follows. Pick an arrow a, and a face F adjacent to a. Without loss of generality, assume
that F is oriented clockwise. Now choose a point on the unit circle lying on the arc determined by a on
the circle around F . Mark the same point on every copy of the unit circle around all clockwise-oriented
faces. One can make the initial choice of a point such that no vertices are marked this way. For every
clockwise-oriented face F ′, mark the arrow on its boundary corresponding to the arc determined by the
marked point on the circle around F ′. The set of arrows marked this way has the following property:
every face has exactly one boundary arrow in this set, except possibly some counterclockwise-oriented
faces adjacent to the boundary of the quiver ([Boc16, §0.9]). Thus if we choose one boundary arrow for
each of these faces, we get a cut containing a and we are done. �



SELF-INJECTIVE JACOBIAN ALGEBRAS FROM POSTNIKOV DIAGRAMS 19

1

2

3

4

56

7

8

9

457

Figure 10. The cut-mutation µ+
457(C) of the cut in Figure 8.
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Figure 11. The cut-mutation µ+
457(C) of the cut C of Figure 9.
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Corollary 8.6. If (Q,W ) is a self-injective quiver with potential constructed from a symmetric Post-
nikov diagram, then all truncated Jacobian algebras ℘(Q,W )C are iterated 2-APR tilts of each other. In
particular they are derived equivalent.

Thus we get not only a way of generating many new examples of self-injective quivers with potential,
but also the corresponding new 2-representation finite algebras.

An interesting property that 2-representation finite algebras can have is that of being l-homogeneous
(see [HI11a, Definition 1.2]). It follows from [HI11a, Theorem 2.3] that a truncated Jacobian algebra
℘(R,W )C as above is l-homogenous for some l if and only if ψ(C) = C (which in our case just means
that C is invariant under rotation by 2πk/n). Thus, examples coming from Postnikov diagrams are a
good source of l-homogeneous, 2-representation finite algebras. One property that these algebras have is
the following:

Theorem 8.7. [HI11a, Theorem 1.3]. A finite-dimensional algebra of global dimension at most 2 is
l-homogeneous 2-representation finite if and only if it is twisted 2 l−1

l -Calabi-Yau.

Twisted fractionally Calabi-Yau algebras can be tensored over C, so we get for instance:

Proposition 8.8. [HI11a, Corollary 1.5] If Λ1,Λ2 are l-homogeneous 2-representation finite algebras,
then Λ1 ⊗C Λ2 is l-homogeneous 4-representation finite.

As we mentioned, in the case of Postnikov diagrams it is easy to see whether a truncated Jacobian
algebra is homogeneous: one needs to check whether the cut is invariant under ρ. For instance, the
truncated Jacobian algebra of Figure 9 is not homogeneous, but the one of Figure 11 is. In particular,
the N -fold tensor product of the latter algebra with itself is 2N -representation finite.

9. Examples

We present some self-injective quivers with potential obtained from symmetric (k, n)-Postnikov dia-
grams. The Nakayama permutation acts by rotation by 2πk/n, and has order a = n /GCD(k, n).

The quivers with potential on the left hand side of Figure 19 and of Figure 26 (corresponding to
(k, n) ∈ {(3, 12), (4, 10)}) had already been found by Martin Herschend, and the latter had also been
found independently by Sefi Ladkani. These results are not published. A symmetric (4, 8)-Postnikov
diagram had appeared in [MR13, Section 11].

9.1. The case a = 2. If a = 2 then we must have n = 2k.

Proposition 9.1. For every k > 1, there exists a symmetric (k, 2k)-Postnikov diagram whose associated
self-injective quiver with potential is a square grid with (k − 1) vertices on each side.

Proof. The construction in Figure 12 yields such a symmetric Postnikov diagram, and it produces the
correct quiver. To avoid clogging the picture, we have not marked the direction of the strands. They
should be understood as follows: strand i crosses strand i+ k coming from the left at vertex i if and only
if i is odd. The strands k and 2k cross strands k − 1, 2k − 2, k − 3, 2k − 4, . . . , k − 2, 2k − 1 in this order
for k and the opposite for 2k, or viceversa depending on the parity of k. �

Such quivers and their planar mutations were already studied in [HI11b, §9.3]. In Figure 13 we show
the cases k = 4, 5.

9.2. The case a = 3. If a = 3 then we may assume n = 3k. Notice that we are treating the cases of
clockwise and counterclockwise rotation together, and this is justified by the fact that now we are focusing
on the self-injective algebra, which does not change if we reflect the quiver (even though the two quivers
are not isomorphic as planar quivers with faces). Here one could expect to get the family of self-injective
quivers with potential given by 3-preprojective algebras of type Aj (cf.[HI11b, §9.2]). This is true for
k ∈ {2, 3, 4}, where we get the quivers in Figures 14 and 15 (corresponding to type A2, A4, A6). Notice
that the quiver corresponding to the symmetric Postnikov diagram of Figure 2 is equivalent to the one
of type A4 by mutation at the orbit consisting of the vertices of the big triangle. Notice that type Aj
with j odd cannot appear this way, since the number of alternating internal faces of a (k, 3k)-Postnikov
diagram is (k − 1)(2k − 1). The Postnikov diagrams corresponding to these three quivers are shown in
Figures 16, 17 and 18.

9.3. The case a = 4. For a = 4 (we may then assume that n = 4k, since the only elements of order
4 in Z/4Z are ±1) we present three self-injective quivers with potential coming from symmetric Post-
nikov diagrams, for (k, n) ∈ {(3, 12), (4, 16), (5, 20)}. They are shown in Figure 19 and Figure 20. The
corresponding Postnikov diagrams are shown in Figures 21, 22 and 23.
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9.4. Cobwebs. We obtain a new infinite family of self-injective quivers with potential, with arbitrarily
large order of σ.

For any odd integer x ≥ 3, define a graph Cob(x) as follows. Set

Cob(x)0 = {c1, . . . , cx} ∪ {dst}t=1,...,2x
s=1,...,(x−3)/2 .

Set

Cob(x)1 = {(ct, ct+1)}t=1,...,x

∪ {(dst, ds,t+1)}t=1,...,2x
s=1,...,(x−3)/2

∪ {(dst, ds+1,t)}t=1,...,2x
s=1,...,(x−5)/2

∪ {(ct, d1,2t−1), (ct, d1,2t)}t=1,...,x

where indices are taken modulo x in the first row and modulo 2x in the second row. This graph has
a natural embedding in the plane given by arranging the vertices ct clockwise in a regular x-gon of
radius 1, and the vertices dst clockwise in a regular 2x-gon of radius s + 1 for every s. This embedding
equips Cob(x) with faces bounded by cycles (one x-gon, x triangles and x2 − 4x squares). Choosing an
orientation of an edge, we can turn Cob(x) into a quiver by requiring that all these cycles be cyclically
oriented. Call Cob+(x) and Cob−(x) the quivers one gets by orienting the x-gon counterclockwise and
clockwise respectively (see Figures 26 and 27). As usual, one can define potentials on these quivers by
taking the alternating sum of all cycles bounding faces.

Proposition 9.2. For every odd x ≥ 3, there exists a symmetric (x − 1, 2x)-Postnikov diagram whose
associated self-injective quiver with potential is Cob+(x). Similarly, there exists a symmetric (x+ 1, 2x)-
Postnikov diagram whose associated self-injective quiver with potential is Cob−(x).

Proof. We give the construction for the first case, the second case being similar. Start by connecting
vertex i to i + x − 1 with a straight strand for every i odd (creating a x-pointed star shape). Then for
every i even, draw a strand i → i + x − 1 as in Figure 24: cross strand i − 1, then follow strand i + x
as close as possible until its start, and cross strand i + 1 as last crossing. This construction yields a
symmetric Postnikov diagram, and it produces the correct quiver. �

In Figure 25 we illustrate the case x = 7. The quivers Cob−(x) are shown in Figure 26 and Figure 27
for x = 5, 7, 9. The Nakayama permutation acts by rotation by π(x+ 1)/x, which has order x.

9.5. Miscellaneous. We have two more examples of self-injective quivers with potential coming from
symmetric Postnikov diagrams, for (k, n) = (6, 15) and (6, 21). We show the first one in Figure 28. For
(k, n) = (6, 21) we get Figure 29. In Figure 30 and Figure 31 we show the corresponding Postnikov
diagrams.
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10. Figures
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Figure 12. The construction of a symmetric (k, 2k)-Postnikov diagram.
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Figure 13. Two square grid self-injective quivers with potential (here n = 2k, k = 4, 5).
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Figure 14. The quivers of the 3-preprojective algebras of type A2 and A4.
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Figure 15. The quiver of the 3-preprojective algebra of type A6.
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Figure 16. The (2, 6)-Postnikov diagram corresponding to the 3-preprojective algebra
of type A2.



24 ANDREA PASQUALI

1

2

3

4

56

7

8

9

Figure 17. The (3, 9)-Postnikov diagram corresponding to the 3-preprojective algebra
of type A4.
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Figure 18. The (4, 12)-Postnikov diagram corresponding to the 3-preprojective algebra
of type A6.
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Figure 19. Self-injective quivers with potential for (k, n) = (3, 12) and (k, n) = (4, 16).
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Figure 20. A self-injective quiver with potential for (k, n) = (5, 20).
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Figure 21. The symmetric (3, 12)-Postnikov diagram corresponding to the left quiver
of Figure 19.
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Figure 22. The symmetric (4, 16)-Postnikov diagram corresponding to the right quiver
of Figure 19.
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Figure 23. The symmetric (5, 20)-Postnikov diagram corresponding to the quiver of
Figure 20.
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Figure 24. How to draw strand i for i even in (x− 1, 2x)-Postnikov diagrams.



28 ANDREA PASQUALI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 25. A symmetric (6, 14)-Postnikov diagram.

Figure 26. The self-injective quivers with potential Cob−(5) and Cob−(7) (for (k, n) =
(6, 10) and (8, 14)).



SELF-INJECTIVE JACOBIAN ALGEBRAS FROM POSTNIKOV DIAGRAMS 29

Figure 27. The self-injective quiver with potential Cob−(9) (for (k, n) = (10, 18)).
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Figure 28. A self-injective quiver with potential for (k, n) = (6, 15).
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Figure 29. A self-injective quiver with potential for (k, n) = (6, 21).

1
2

3

4

5

6

7

89

10

11

12

13

14

15

Figure 30. The Postnikov diagram corresponding to the quiver of Figure 28.
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Figure 31. The Postnikov diagram corresponding to the quiver of Figure 29.
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