
TENSOR PRODUCTS OF n-COMPLETE ALGEBRAS
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Abstract. If A and B are n- and m-representation finite k-algebras, then

their tensor product Λ = A ⊗k B is not in general (n + m)-representation
finite. However, we prove that if A and B are acyclic and satisfy the weaker

assumption of n- and m-completeness, then Λ is (n + m)-complete. This

mirrors the fact that taking higher Auslander algebra does not preserve d-
representation finiteness in general, but it does preserve d-completeness. As a

corollary, we get the necessary condition for Λ to be (n + m)-representation

finite which was found by Herschend and Iyama by using a certain twisted
fractionally Calabi-Yau property.

1. Introduction

Higher Auslander-Reiten theory was developed in a series of papers [Iya07b],
[Iya07a], [Iya08] as a tool to study module categories of finite-dimensional algebras.
The idea is to replace all the homological notions in classical Auslander-Reiten
theory with higher-dimensional analogs. Some early results can be found in [IO11],
[HI11b]. This approach has been fruitful in the context of noncommutative algebraic
geometry, see for instance [AIR15], [HIO14], [HIMO14]. Higher Auslander-Reiten
theory is also deeply tied with d-homological algebra ([GKO13], [Jas16], [Jør15]).
A presentation of the theory from this point of view can be found in [JK16].

In this setting, d-representation finite algebras were introduced in [Iya11] as a
generalisation of hereditary representation finite algebras. They are algebras of
global dimension at most d that have a d-cluster tilting module M . The category
addM has nice homological properties and behaves in many ways like the module
category of a hereditary representation finite algebra. While classification of d-
representation finite algebras seems far from being achieved, it makes sense to look
for examples, and to try to understand how d-representation finiteness behaves with
respect to reasonable operations. Notice that in this setting we have more freedom
than in the hereditary case, since we are allowed to increase the global dimension
and still fall within the scope of the theory.

For instance, in [Iya11] Iyama investigates whether the endomorphism algebra
of the d-cluster tilting module (called the higher Auslander algebra) is (d + 1)-
representation finite. This turns out to be false in general, but a necessary and
sufficient condition is given: the only case where it is true is within the tower of
iterated higher Auslander algebras of the upper triangular matrix algebra, so this
construction gives only a specific family of examples. On the other hand, in the
same paper the weaker notion of d-complete algebra is introduced and studied. A
d-complete algebra is an algebra of global dimension at most d that has a module
which is d-cluster tilting in a suitable exact subcategory of the module category.
It turns out that this weaker notion is preserved under taking higher Auslander
algebras, thereby producing many examples of d-complete algebras for any d.

1



2 ANDREA PASQUALI

Another operation one might investigate is that of taking tensor products over
the base field k. Indeed, if k is perfect then gl.dimA⊗kB = gl.dimA+gl.dimB, so
it makes sense to ask whether the tensor product of an n- and an m-representation
finite algebras is (n+m)-representation finite. This is false in general, and in [HI11a]
Herschend and Iyama give a necessary and sufficient condition (l-homogeneity) for
it to be true.

In this paper we prove that the same weaker notion of d-completeness which
is used in [Iya11] is preserved under tensor products, under the assumption of
acyclicity. Namely, if A is n-complete and acyclic and B is m-complete and acyclic,
then A ⊗k B is (n + m)-complete and acyclic. If we assume that A and B are
l-homogeneous, we recover the result by Herschend and Iyama. This gives a new
way of producing d-complete algebras for any d.

The proof we give is structured as follows. We prove that over the tensor product
there are (n+m)-almost split sequences (using the same construction as in [Pas17]),
and moreover that injective modules have source sequences. Then we use these
sequences, combined with the assumption of acyclicity, to prove that the module T
in the definition of (n+m)-completeness is tilting. By [Iya11, Theorem 2.2(b)], the
existence of the above sequences in T⊥ is equivalent to M being (n + m)-cluster
tilting in T⊥, which is the key point of (n+m)-completeness.

In Sections 2 we lay down notation, conventions, and preliminary definitions.
Section 3 contains the statement of our main result. Section 4 contains the results
about d-almost split sequences and tensor products which we want to use. Section
5 is dedicated to proving the main theorem, which amounts to checking that the
tensor product satisfies the defining properties of (n + m)-complete algebras. In
Section 6 we present some examples.

2. Notation and conventions

Throughout this paper, k denotes a fixed perfect field. All algebras are associa-
tive, unital, and finite dimensional over k. For an algebra Λ, mod Λ (respectively
Λ mod) denotes the category of finitely generated right (left) Λ-modules. We denote
by D the duality D = Homk(−, k) between mod Λ and Λ mod (in both directions).
Subcategories are always assumed to be full and closed under isomorphisms, finite
direct sums and summands. For M ∈ mod Λ, we denote by addM the subcate-
gory of mod Λ whose objects are all modules isomorphic to finite direct sums of
summands of M . We write radΛ(−,−) for the subfunctor of HomΛ(−,−) defined
by

radΛ(X,Y ) = {f ∈ HomΛ(X,Y ) | idX −g ◦ f is invertible ∀g ∈ HomΛ(Y,X)} .

Moreover, for X,Y ∈ mod Λ, we write topΛ(X,Y ) = HomΛ(X,Y )/ radΛ(X,Y ).
We often write Hom instead of HomΛ and similarly for rad and top when the con-
text allows it. We denote by Db(Λ) the bounded derived category of mod Λ. For
a subcategory C of Db(Λ), we denote by thick C the smallest triangulated subcat-
egory of Db(Λ) containing C. If C = addM for some M ∈ mod Λ ⊆ Db(Λ), we
write thickM = thick(addM). All tensor products are over k, even when the
specification is omitted to simplify the notation.
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Throughout this section, let gl.dim Λ ≤ d. Then we can define the higher
Auslander-Reiten translations by

τd = DExtdΛ(−,Λ) : mod Λ→ mod Λ

τ−d = ExtdΛop(D−,Λ) : mod Λ→ mod Λ.

We are interested in categories associated to tilting modules.

Definition 2.1. A Λ-module T is tilting if the following conditions are satisfied:

(1) Exti(T, T ) = 0 for all i 6= 0,
(2) there is an exact sequence 0→ Λ→ T0 → · · · → Tm → 0 for some m with

Ti ∈ addT for all i.

The second condition in the definition can be replaced by

thickT = Db(Λ).

For a tilting module T , we have an exact subcategory of mod Λ

T⊥ =
{
X ∈ mod Λ | Exti(T,X) = 0 for every i 6= 0

}
We are interested in d-cluster tilting subcategories of T⊥.

Definition 2.2. Let T be a tilting module. A subcategory C of T⊥ is called d-
cluster tilting if

C =
{
X ∈ T⊥ | Exti(C, X) = 0 for every 0 < i < d

}
=

=
{
X ∈ T⊥ | Exti(X, C) = 0 for every 0 < i < d

}
.

We follow [Iya11, Definition 1.11] and define the following subcategories of mod Λ:

(1) M =M(Λ) = add
{
τ idDΛ | i ≥ 0

}
,

(2) P = {X ∈M | τdX = 0},
(3) MP = {X ∈M | X has no nonzero summands in P}.
(4) MI = {X ∈M | X has no nonzero summands in addDΛ}.

Let TΛ be a basic module such that addTΛ = P.

Definition 2.3. An algebra Λ is d-complete if the following conditions hold:

(Ad) TΛ is a tilting module.
(Bd) M is a d-cluster tilting subcategory of T⊥Λ ,

(Cd) Exti(MP ,Λ) = 0 for every 0 < i < d.

Note that condition (Ad) implies that τ ld = 0 for large l ([Iya11, Proposition
1.12(d) and 1.3(c)]). Note moreover that if Λ is d-complete then since gl.dim Λ ≤
d it follows that gl.dim Λ ∈ {0, d}. This is a generalisation of the notion of d-
representation finiteness which we use in [Pas17]. Without loss of generality, from
now on we assume that Λ is basic. We write T for TΛ when the context allows it.
Then [Iya11, Proposition 1.13] says that “d-representation finite” is the same as
“d-complete with T = Λ”.

If Λ is d-complete, then for every indecomposable injective Ii there is a unique
li ∈ N such that τ li−1

d Ii ∈ P, and

TΛ =
⊕
i

τ li−1
d Ii.

Definition 2.4 ([HI11a]). Let Λ be a k-algebra of global dimension d such that

τ ld = 0 for l sufficiently large. We say that Λ is l-homogeneous if τ l−1
d DΛ = TΛ.
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If Λ is d-complete, this means that li = l for every i.
Our main result is proved only for acyclic algebras, let us define what we mean

by that. Let M ∈ mod Λ, and let C = addM . We want to define a preorder on the
indecomposable objects ind C of C. For X,Y ∈ ind C, we say X < Y if there is a
sequence (X = X0, X1, . . . , Xm+1 = Y ) for some m ≥ 0, such that Xi ∈ ind C and
radΛ(Xi, Xi+1) 6= 0 for all i. This defines a transitive relation < on ind C. Notice
that we can replace radΛ(Xi, Xi+1) 6= 0 with radC(Xi, Xi+1) 6= 0 above.

Definition 2.5. The category C is directed if < is antisymmetric, that is if no
indecomposable module X ∈ C satisfies X < X. If C = addM , we say that M is
directed. We call the algebra Λ acyclic if ΛΛ is directed.

3. Main result

We now consider the case where A is n-complete, B is m-complete, and Λ =
A⊗kB. Since k is perfect, we have that gl.dim Λ = gl.dimA+gl.dimB. Moreover,
by the Künneth formula we have τn+mX⊗Y = τnX⊗ τmY . Since indecomposable
injective Λ-modules are of the form X ⊗ Y , it follows that all indecomposable
modules in M are of this form. Our main result is the following:

Theorem 3.1. Let A,B be n- respectively m-complete acyclic k-algebras, with k
perfect. Then A⊗k B is (n+m)-complete and acyclic.

Note that as far as the author is aware, there are no known examples of d-
complete algebras which are not acyclic (this is Question 5.9 in [HIO14]).

This result can be applied inductively to construct d-complete algebras starting
for example from hereditary representation finite algebras and taking tensor prod-
ucts. In this sense, it is similar in spirit to [Iya11, Theorem 1.14 and Corollary
1.16], where Iyama constructs towers of d-complete algebras (with increasing d)
by taking iterated higher Auslander algebras. The algebra A ⊗ B is almost never
(n+m)-representation finite by the characterisation given by Herschend and Iyama
in [HI11a]. Our result specialises to their characterisation in the acyclic case:

Corollary 3.2. Let A,B be n- respectively m-representation finite acyclic k-algebras,
with k perfect. Then the following are equivalent:

(1) A⊗k B is (n+m)-representation finite.
(2) ∃l ∈ N such that A and B are l-homogeneous.

Moreover, in this case A⊗k B is also l-homogeneous.

It should be noted that there is a choice involved in the definition we gave of
d-completeness, namely that we take M to be the τd-completion of addDΛ. We
might as well take M to be the τ−d -completion of add Λ, and call Λ d-cocomplete
if it satisfies the dual conditions to (Ad), (Bd), (Cd). Then Λ is d-complete if and
only if Λop is d-cocomplete. Notice that d-representation finite is the same as d-
complete and d-cocomplete with the same M. However, if A and B are n- and
m-representation finite, then A ⊗ B is (n + m)-complete and cocomplete, but in
general not with the same M.

4. Preparation

4.1. d-complete algebras. Following [Iya11], we make some observations about
d-complete algebras in general. Fix a finite-dimensional algebra Λ.
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Lemma 4.1. If gl.dim Λ ≤ d, the following are equivalent:

(1) Exti(MP ,Λ) = 0 for 0 < i < d
(2) Exti(MP ,Λ) = 0 for 0 ≤ i < d.

Proof. The only direction to prove follows from [Iya11, Lemma 2.3(b)]. �

Proposition 4.2. If Λ is d-complete, then

Hom(τ idDΛ, τ jdDΛ) = 0

if i < j.

Proof. This follows from [Iya11, Lemma 2.4(e)]. �

We can define slices S(i) on M by saying that S(i) = add τ idDΛ. Thus

M =
∨
i≥0

S(i)

(meaning that every object X ∈M can be written uniquely as X =
⊕

i≥0Xi with

Xi ∈ S(i)) and moreover Hom(S(i),S(j)) = 0 if i < j.

Lemma 4.3. If Λ is d-complete then τ±d induce quasi-inverse equivalences MP ↔
MI .

Proof. This is [Iya11, Lemma 2.4(b)]. �

4.2. d-almost split sequences. In the spirit of generalising Auslander-Reiten the-
ory, it is natural to define the higher analog of almost split sequences as follows.

Definition 4.1 (Iyama). A complex with objects in a subcategory C of mod Λ

Cd
fd // Cd−1

fd−1
// Cd−2

fd−2
// · · ·

is a source sequence (in C) of Cd if the following conditions hold:

(1) fi ∈ rad(Ci, Ci−1) for all i,
(2) The sequence of functors

· · ·
−◦fd−2

// Hom(Cd−2,−)
−◦fd−1

// Hom(Cd−1,−)
−◦fd // rad(Cd,−) // 0

is exact on C.
Dually we can define sink sequences. An exact sequence

0 // Cd+1
// Cd−1

// · · · // C1
// C0

// 0

is an d-almost split sequence if it is a source sequence of Cd+1 and a sink sequence
of C0. We say that such d-almost split sequence starts in Cd+1 and ends in C0.

Definition 4.2. We say that M =M(Λ) has d-almost split sequences if for every
indecomposable X ∈MI (respectively Y ∈MP ) there is an d-almost split sequence
in C

0→ X → Cd → · · · → C1 → Y → 0.

In this case we must have X ∼= τdY, Y ∼= τ−d X. This holds for d-complete
algebras ([Iya11, Theorem 2.2(a)(i)]):

Theorem 4.4. If Λ is d-complete, then M has d-almost split sequences.
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To apply the methods introduced in [Pas17], we need to rephrase Definition 4.1
as follows: for any indecomposable X ∈ C we can define a functor FX on complexes
of radical maps by mapping

C• = · · ·
fi+1

// Ci
fi // · · ·

f1 // C0
f0 // · · ·

to

FX(C•) = · · ·
fi+1◦−

// Hom(X,Ci)
fi◦− // · · ·

f1◦− // rad(X,C0)
f0◦− // · · ·

(that is, FX is the subfunctor of Hom(X,−) given by replacing Hom(X,C0) with
rad(X,C0)). Similarly, we can define a subfunctor GX of the contravariant functor
Hom(−, X) by mapping C• to

GX(C•) = · · ·
−◦f0 // Hom(C0, X)

−◦f1 // · · ·
−◦fd+1

// rad(Cd+1, X)
−◦fd+2

// · · ·

Lemma 4.5. Let C• be a complex in C. Then

(1) If Ci = 0 for all i > d+ 1, then C• is a sink sequence if and only if FX(C•)
is exact for every X ∈ C.

(2) If Ci = 0 for all i < 0, then C• is a source sequence if and only if GX(C•)
is exact for every X ∈ C.

(3) If Ci = 0 for all i > d+ 1 and i < 0, then C• is d-almost split if and only
if FX(C•) and GX(C•) are exact for every X ∈ C.

Proof. Direct check using the definitions. �

By additivity, in the above Lemma we can replace “every X ∈ C” by “every
indecomposable X ∈ C”.

Notice that since d-almost split sequences come from minimal projective resolu-
tions of a functor rad(C0,−), they are uniquely determined by C0 up to isomorphism
of complexes. Moreover, we have

Lemma 4.6. Any map f0 : C0 → D0 between indecomposables in MP induces a
map of complexes f• : C• → D•, where

C• = 0 // Cd+1

gd+1
// · · ·

g1 // C0
// 0,

D• = 0 // Dd+1

hd+1
// · · · h1 // D0

// 0

are the d-almost split sequences ending in C0 and D0 respectively, if these exist.

Proof. The map f0g1 : C1 → D0 is a radical morphism, and since

Hom(C1, D1)
h1◦− // rad(C1, D0)

is surjective, there is a map f1 : C1 → D1 such that h1f1 = f0g1. Now assume
we have constructed maps fj : Cj → Dj that make all diagrams commute, for all
0 ≤ j < i for some i ≥ 2. We have that

Hom(Ci, Di)
hi◦− // Hom(Ci, Di−1)

hi−1◦−
// Hom(Ci, Di−2)

is exact in the middle term by assumption. Since hi−1fi−1gi = fi−2gi−1gi = 0, we
have that fi−1gi ∈ ker(hi−1 ◦ −) = im(hi ◦ −), that is there is a map fi : Ci → Di

such that fi−1gi = hifi. The fi’s we have defined recursively give by construction
a map of complexes f• : C• → D•. �
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The following is a result which appeared in [Pas17] in the setting of d-representation
finite algebras, and which can be reformulated in the setting of d-complete algebras.

Theorem 4.7. Let Λ be d-complete. Let X ∈ S(i) with i > 0. Then the d-
almost split sequence starting in X is isomorphic as a complex to Coneϕ, where
ϕ : E• → F• is a map of complexes, such that:

(1) All the maps appearing in E•, F•, and the components of ϕ are radical,
(2) Ej ∈ S(i) and Fj ∈ S(i− 1) for every j.

Proof. This is shown exactly as in [Pas17, Theorem 2.3]. Namely, one decomposes
the modules Mj appearing in the d-almost split sequence starting in X as Mj =⊕

i≥0Mij with Mij ∈ S(i). One checks using Proposition 4.2 that in order for the

sequence to be d-almost split, all the Mj must be in add
(
τ idDΛ⊕ τ i−1

d DΛ
)

for some

i. Now let Ej = Mi,j+1 and Fj = Mi−1,j . Using that Hom(τ i−1
d DΛ, τ idDΛ) = 0

one can choose suitable differentials for E• and F• and a morphism ϕ• : E• → F•
such that Coneϕ is the desired sequence. �

We will need a technical lemma:

Lemma 4.8. Let

0 // Cd+1

fd+1
// Cd

// · · · // C1
f1 // C0

// 0

be a d-almost split sequence. Then for any choice of decomposition of the modules
Ci into indecomposables, the corresponding matrices of the maps fi have no zero
column and no zero row.

Proof. We argue by contradiction. Assume fi has a zero column for i > 1. Then
there is a complex

Ci+1

[
f1
i+1

f2
i+1

]
// C1

i ⊕ C2
i

[ f1
i 0 ]
// Ci−1

such that

Hom(C2
i , Ci+1)

[
f1
i+1◦−

f2
i+1◦−

]
//

Hom(C2
i ,C

1
i )

⊕
Hom(C2

i ,C
2
i )

[ f1
i ◦− 0 ]

// Hom(C2
i , Ci−1)

is exact in the middle, which implies that f2
i+1◦− is surjective on Hom(C2

i , C
2
i ), and

so there is h ∈ Hom(C2
i , Ci+1) such that f2

i+1◦h = idC2
i
. Since f2

i+1 ∈ rad(Ci+1, Ci),

it follows that C2
i = 0 and we are done. For proving the case i = 1, just replace

Hom(C2
i , Ci+1) with rad(C2

i , Ci+1), and the argument goes through.
The dual argument, using the fact that d-almost split sequences are source, yields

the claim for rows. �

4.3. Tensor products. The main tool which allows us to perform homological
computations for tensor products is the Künneth formula over a field ([CE56,
VI.3.3.1]):

Lemma 4.9. If X•, Y• are complexes, then there is a functorial isomorphism

Hi(X• ⊗ Y•) ∼=
⊕

p+q=i

Hp(X•)⊗Hq(Y•).
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Since tensor products of projective resolutions are projective resolutions, we
immediately get

Lemma 4.10. If M1,M2 ∈ modA and N1, N2 ∈ modB, then there is a functorial
isomorphism

ExtiA⊗B(M1 ⊗N1,M2 ⊗N2) ∼=
⊕

p+q=i

ExtpA(M1,M2)⊗ ExtqB(N1, N2).

The total tensor product of complexes is a functor in a natural way, so we can
speak of tensor products of maps of complexes (for a very general treatment of
how this is done, see [CE56, IV.4 and IV.5]). An important result which is proved
in [Pas17] for d-representation finite algebras is also true for d-complete algebras,
namely:

Theorem 4.11. Let A,B be n- respectively m-complete algebras. Let Coneϕ and
Coneψ be n- respectively m-almost split sequences starting in add τ inDA respectively
add τ imDB for some common i > 0. Then Cone(ϕ⊗ ψ) is an (n+m)-almost split
sequence in M(A⊗B).

Proof. This is proved in the same way as in [Pas17, Section 3.3]. For convenience,
we present the main points of the proof. By definition Cone(ϕ ⊗ ψ) is a complex
bounded between 0 and n + m + 1, it is exact by the Künneth formula, and it
is easy to check that all maps appearing are radical. Now ϕ : A0

• → A1
• and

ψ : B0
• → B1

• , and by assumption we have that A0
j ∈ add τ inDA, A1

j ∈ add τ i−1
n DA,

B0
j ∈ add τ imDB and B1

j ∈ add τ i−1
m DB for every j since Aj ⊗ Bj ∈ M(A ⊗ B).

Let now M ⊗ N be any indecomposable in M(A ⊗ B). We need to prove that
FM⊗N (Cone(ϕ ⊗ ψ)) is exact. As in [Pas17, Section 2.3], for a radical map of

radical complexes η : A• → B• and a module X we can define F̃X(η) = η ◦ − :
Hom(X,A•)→ FX(B•). Then in our setting there is a commutative diagram

Hom(M,A0
•)⊗Hom(N,B0

•)
∼= //

F̃M (ϕ)⊗ F̃N (ψ)
��

Hom(M ⊗N,A0
• ⊗B0

•)

F̃M⊗N (ϕ⊗ ψ)
��

FM (A1
•)⊗ FN (B1

•) // FM⊗N (A1
• ⊗B1

•).

Now FM⊗N (Cone(ϕ⊗ψ)) is exact if and only if F̃M⊗N (ϕ⊗ψ) is a quasi-isomorphism.

The left map in the diagram F̃M (ϕ)⊗ F̃N (ψ) is a quasi-isomorphism since Cone(ϕ)
and Cone(ψ) are n- respectively m-almost split sequences. Then it is enough to
prove that the bottom map is a quasi-isomorphism, and this is done by showing
that its cokernel is isomorphic to

FM (A1
•)⊗ top(N,B1

0)⊕ top(M,A1
0)⊗ FN (B1

•)

and then by easy verification that the above cokernel is exact. The computation of
the cokernel is done explicitly in [Pas17, Section 3.3, pp.660–662]. �

Corollary 4.12. Let A,B be n- respectively m-complete algebras. ThenM(A⊗B)
has (n+m)-almost split sequences.

Notice that the above theorem does not require the algebra A⊗B to be (n+m)-
representation finite (in which case we know a priori that (n + m)-almost split
sequences must exist). In the setting of [Pas17], this result is about describing the
structure of such sequences. In the setting of d-complete algebras, this result is
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used to prove that (n + m)-almost split sequences exist, whereas it is a priori not
clear that they should.

One can also say something about injective modules (which are not the starting
point of any d-almost split sequence).

Proposition 4.13. Let A,B be n- respectively m-complete algebras, and let Λ =
A⊗B. Then for every injective Λ-module X ⊗ Y there is a source sequence

X ⊗ Y → En+m → · · · → E1 → 0

in M(Λ).

Proof. Since X and Y are injective, we have sequences inM(A) respectivelyM(B)

X• = X → Cn → · · · → C1 → 0

Y• = Y → Dm → · · · → D1 → 0

such that

0→ Hom(C1,M)→ · · · → Hom(X,M)→ top(X,M)→ 0,

0→ Hom(D1, N)→ · · · → Hom(Y,N)→ top(Y,N)→ 0

are exact for all indecomposables M,N . Now consider the homology of X• ⊗ Y•.

Hi(X• ⊗ Y•) =
⊕

p+q=i

Hp(X•)⊗Hq(Y•) =

{
H0(X•)⊗H0(Y•) if i = n+m+ 2

0 else.

So we have at least an exact sequence

X• ⊗ Y• = X ⊗ Y → · · · → C1 ⊗D1 → 0.

Apply Hom(−,M ⊗N) to this sequence and compute homology.

Hi(Hom(X• ⊗ Y•,M ⊗N)) = Hi (Hom(X•,M)⊗Hom(Y•,M)) =

=
⊕

p+q=i

Hp(Hom(X•,M))⊗Hq(Hom(Y•,M)) =

=

{
top(X,M)⊗ top(Y,N) if i = 0

0 else.

We will be done if we prove that X• ⊗ Y• is source, which amounts now to prove
that

top(X ⊗ Y,M ⊗N) = H0(Hom(X• ⊗ Y•,M ⊗N)) = top(X,M)⊗ top(Y,N).

By tensoring the complexes

0→ rad(X,M)→ Hom(X,M)

and

0→ rad(Y,N)→ Hom(Y,N)

and looking at homology, one finds an exact sequence

0→ rad(X,M)⊗Hom(Y,N) + Hom(X,M)⊗ rad(Y,N)→
→ Hom(X,M)⊗Hom(Y,N)→ top(X,M)⊗ top(Y,N)→ 0.
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Now the middle term is isomorphic to Hom(X ⊗ Y,M ⊗N), and this isomorphism
induces an isomorphism between the first term and rad(X ⊗ Y,M ⊗N), hence by
looking at cokernels we get

top(X ⊗ Y,M ⊗N) ∼=
Hom(X ⊗ Y,M ⊗N)

rad(X ⊗ Y,M ⊗N)

∼=
Hom(X,M)⊗Hom(Y,N)

rad(X,M)⊗Hom(Y,N) + Hom(X,M)⊗ rad(Y,N)
∼= top(X,M)⊗ top(Y,N)

and we are done. �

Lemma 4.14. Let A,B be n- respectively m-complete algebras. Then the following
are equivalent:

(1) TA⊗B ∼= TA ⊗ TB.
(2) ∃l ∈ N such that A and B are l-homogeneous.

Proof. (2)⇒ (1) is clear by definition.
To prove (1) ⇒ (2), assume it does not hold, that is TA⊗B ∼= TA ⊗ TB but

there are i, j such that li 6= lj for the corresponding indecomposable injectives
Ei ∈ addDA and Fj ∈ addDB. We can assume that li > lj , otherwise the proof

is similar. Call Xij = τ li−1
n Ei ⊗ τ

lj−1
m Fj ∈ addTA⊗B . Then

τ
−lj+1
m+n (Xij) = τ li−ljn Ei ⊗ Fj

is not injective, since by assumption τ
li−lj
n Ei is not injective. On the other hand,

modules in M(A⊗B) which satisfy τm+nX = 0 are precisely the injective A⊗B-

modules, and so τ
−lj+1
m+n (Xij) is not in M, contradiction. �

4.4. Acyclicity. We collect here some lemmas about acyclicity which we will use.

Lemma 4.15. The module ΛΛ is directed if and only if the module DΛΛ is directed.

Proof. The Nakayama functor induces an equivalence ν : add ΛΛ → addDΛΛ, and
the definition of directedness is invariant under equivalence. �

Lemma 4.16. Let Λ be d-complete. Then Λ is acyclic if and only ifM is directed.

Proof. IfM is directed, then so is addDΛ ⊆M. By Lemma 4.15, Λ is then acyclic.
Conversely, if Λ is acyclic then addDΛ is directed by Lemma 4.15, and then so

is add τ idDΛ for any i by Lemma 4.3. Any nonzero map between indecomposables
in M is either within a slice S(i) = add τ idDΛ or from S(i) to S(j) with j < i.
Therefore there can be no cycles within a slice nor cycles that contain modules
from different slices and M is directed. �

Acyclicity is well suited to study d-almost split sequences.

Lemma 4.17. Let Λ be d-complete, and let

0 // τdX // Cd
// · · · // C1

// X // 0

be a d-almost split sequence in mod Λ. Then for every indecomposable summand Y

of
⊕d

i=1 Ci, we have

τdX < Y < X.

Proof. This follows directly from Lemma 4.8 and the definition of <. �
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Let us now consider acyclicity in relation to tensor products.

Lemma 4.18. The algebras A and B are acyclic if and only if Λ = A ⊗ B is
acyclic.

Proof. Let us first remark that for X,X ′ ∈ modA and Y, Y ′ ∈ modB we have

rad(X ⊗ Y,X ′ ⊗ Y ′) = rad(X,X ′)⊗Hom(Y, Y ′) + Hom(X,X ′)⊗ rad(Y, Y ′)

by [Pas17, Lemma 3.6]. Assume X < X in addA via X1, . . . , Xm. Then for an
indecomposable P ∈ addB we have that X ⊗ P < X ⊗ P via X1 ⊗ P, . . . ,Xm ⊗ P
since

rad(Xi ⊗ P,Xi+1 ⊗ P ) ⊇ rad(Xi, Xi+1)⊗ End(P ) 6= 0

for all i. Therefore if Λ is acyclic then A is acyclic. By symmetry, if Λ is acyclic
then B is acyclic as well.

Let us now prove the converse implication. Assume that X ⊗ Y < X ⊗ Y in
add Λ via X1 ⊗ Y1, . . . , Xm ⊗ Ym. We can assume that rad(X,X) = 0 = rad(Y, Y ).
Moreover, it cannot be that Xi

∼= X for all i and that Yj ∼= Y for all j. Without
loss of generality, assume that Xi 6∼= X for some i. We will prove that X < X
via a subsequence (Zj) of the Xi’s. We have that Hom(Xi, Xi+1) 6= 0 for all i
by assumption. Set Z0 = X and Zj = Xi, where i = min {l | Xl 6∼= Zj−1} for
j > 0. By construction, Zp = X for some p (and for j > p, Zj is not defined).
Then we are done, since by construction Hom(Zi, Zi+1) 6= 0 and Zi 6∼= Zi+1 so that
rad(Zi, Zi+1) 6= 0 since Zi, Zi+1 are indecomposable. �

5. Proof of main result

From now on, let A be n-complete acyclic, let B be m-complete acyclic and let
Λ = A⊗kB. We use the notation of Definition 2.3. There are three conditions that
need to be checked to prove the main theorem (since we saw in Lemma 4.18 that Λ
is acyclic), namely that properties (Ad), (Bd), (Cd) in Definition 2.3 are preserved
under tensor products.

Proposition 5.1. ExtiΛ(M,M) = 0 for 0 < i < n+m.

Proof. Let X ⊗ Y ∈MP . We have for i < n+m

Exti(X ⊗ Y,A⊗B) =
⊕

p+q=i

Extp(X,A)⊗ Extq(Y,B) = 0

so we conclude by [Iya11, Proposition 2.5 (a)]. �

By the same formula, Λ satisfies condition (Cn+m):

Lemma 5.2. Exti(MP ,Λ) = 0 for all 0 < i < n+m.

Proof. Use the same formula as in Proposition 5.1. �

Notice that since τn+m = τn⊗ τm onM, for sufficienly big l we have τ ln+mDΛ =
0, so M has an additive generator.

We now start proving that condition (An+m) holds.
For S = S1 ⊕ S2 with S1 ∈ addT and S2 ∈ MP , define ES = S1 ⊕ τn+mS2.

Note that ElDΛ = T for l � 0. Now fix S = EiDΛ for some i ≥ 0. To check
condition (An+m) for Λ, we need some preliminaries.

Lemma 5.3. If Exti(S, S) = 0 for all i 6= 0, then Exti(ES,ES) = 0 for all i 6= 0.
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Proof. Since ExtiΛ(M,M) = 0 for 0 < i < n + m, it suffices to check that
Extn+m(ES,ES) = 0. Since ES = S1 ⊕ τn+mS2, consider first M1 ⊗N1 ∈ addS1

and M2 ⊗N2 ∈ addES. Then

Extn+m(M1 ⊗N1,M2 ⊗N2) = Extn(M1,M2)⊗ Extm(N1, N2) = 0

since M1⊗N1 ∈ addS1 ⊆ addT implies that either M1 or N1 is relative projective
in T⊥A respectively T⊥B . This proves that Extn+m(S1, ES) = 0. Now let Y be
an indecomposable summand of ES, and consider Extn+m(τn+mS2, Y ). If Y is
injective, then this is 0. Otherwise, Y = τn+mτ

−
n+mY and

Extn+m(τn+mS2, Y ) = Extn+m(S2, τ
−
n+mY ) = 0

by the assumption. �

Lemma 5.4. If S is tilting then thickES = Db(Λ).

Proof. Set S = addS. For X ∈ indS, define h(X) to be the height of X with
respect to the partial order introduced in Section 4.4 on indS (here it is crucial
that Λ be acyclic, which follows from the assumptions on A and B and Lemma
4.18), that is

h(X) = max {n | ∃Y0 < · · · < Yn = X, Yi ∈ indS} .
Notice thatX > Y implies h(X) > h(Y ), and the reverse implication holds provided
that X and Y are comparable. Call Ci = add ({ES} ∪ {Y ∈ indS | h(Y ) < i}). For
X ∈ indS, if τn+mX = 0 then X ∈ addES. Otherwise, there is an (n+m)-almost
split sequence

0→ τn+mX → · · · → X → 0

whose middle terms are in add ({ES} ∪ {Y ∈ indS | Y < X}) by Lemma 4.17. In
particular if h(X) ≤ i then the middle terms in the sequence are in

add ({ES} ∪ {Y ∈ indS | h(Y ) < i}) = Ci.
It follows that thick Ci+1 ⊆ thick Ci, so thick Cj ⊆ thick C0 for every j. Now C0 =
addES, and Cj = add(ES ⊕ S) for some j, so we get that thickES = thick C0 =
thick Cj = Db(Λ) as claimed. �

Theorem 5.5. T = TA⊗B is tilting.

Proof. By Lemma 5.3 and Lemma 5.4, if S = EiDΛ is tilting then ES = Ei+1DΛ
is tilting. Since DΛ is tilting, and T = ElDΛ for some l, it follows that T is
tilting. �

Now we start proving that condition (Bn+m) holds. We will use the following
result (this is [Iya11, Theorem 2.2(b)]):

Theorem 5.6. Let Λ be a finite-dimensional k-algebra, d ≥ 1 and T ∈ mod Λ a
tilting module with proj.dimT ≤ d. Let C = addC be a subcategory of T⊥ such that
ExtiΛ(C, C) = 0 for 0 < i < d and T ⊕DΛ ∈ C. Then the following are equivalent:

(1) C is a d-cluster tilting subcategory in T⊥.
(2) Every indecomposable X ∈ C has a source sequence of the form

X → Cd → · · · → C0 → 0

with Ci ∈ C for all i.
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We want to apply this to Λ = A⊗B, C =M, T = TA⊗B and d = n+m.

Lemma 5.7. M⊆ T⊥.

Proof. By Proposition 5.1, it is enough to check that Extn+m(T,M) = 0. Let
M1 ⊗M2 ∈ addT . Then either M1 or M2 is relative projective in T⊥A respectively
T⊥B , so

Extn+m(M1 ⊗M2, N1 ⊗N2) = Extn(M1, N1)⊗ Extm(M2, N2) = 0

for any N1 ⊗N2 ∈M. �

Theorem 5.8. M is an (n+m)-cluster tilting subcategory of T⊥.

Proof. By Proposition 5.1 and Lemma 5.7, we can take Λ = A ⊗ B, C = M,
T = TA⊗B and d = n + m in the assumptions of Theorem 5.6. By Corollary 4.12
and Proposition 4.13, condition (2) is satisfied. Our claim is then the equivalent
statement (1). �

Now we have established everything we need to prove the main result.

Proof of Theorem 3.1. By Theorem 5.5, Theorem 5.8, and Lemma 5.2, we have
that A ⊗ B satisfies the conditions (An+m), (Bn+m), (Cn+m) in the definition of
(n+m)-complete algebra. By Lemma 4.18, A⊗B is acyclic. �

Proof of Corollary 3.2. By Theorem 3.1, A ⊗ B is (n + m)-complete. By [Iya11,
Proposition 1.13], we have that TA ∼= A, TB ∼= B and that A ⊗ B is (n + m)-
representation finite if and only if TA⊗B ∼= A⊗B. By Lemma 4.14, this happens if
and only if A and B are l-homogeneous for some common l. �

6. Examples

Let us consider one of the simplest non-trivial examples. Let A = B = kQ,
where Q is the quiver

1 2.oo

Then Λ = A⊗B is the quiver algebra of a commutative square. This algebra is
2-complete, since the factors are 1-representation finite. It is not 2-representation
finite since the factors are not homogeneous. However, Λ is representation finite,
so we can draw the entire Auslander-Reiten quiver of Λ. We represent modules by
their dimension vector.

0 0
1 1

!!

1 0
0 0

!!

0 1
0 1

!!
0 0
1 0

>>

!!

1 0
1 1

//

>>

!!

1 1
1 1

// 1 1
0 1

!!

>>

0 1
0 0

1 0
1 0

>>

0 0
0 1

>>

1 1
0 0

>>

In this case,

T = 0 0
1 0 ⊕ 1 1

1 1 ⊕ 0 1
0 1 ⊕ 1 1

0 0
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and

M = addM = add(T ⊕ 0 1
0 0 ).

One can explicitly compute all Ext-groups of all pairs of indecomposables, since
we have only finitely many. If we represent by ⊗ the indecomposables in addT , by
� the ones in M but not in addT , by � the ones in T⊥ but not in M, and by ·
the ones outside T⊥, we get the following picture:

·

��

·

��

⊗

��

⊗

@@

��

�

??

��

// ⊗ // �

??

��

�

·

@@

·

??

⊗

??

It can be checked that both the indecomposable modules in T⊥\M have extensions
with M on both sides, as it is required by the definition of 2-cluster tilting. Here
we find that M is 2-cluster tilting in T⊥.

The Auslander-Reiten quiver of add(M) is given by

0 1
0 1

!!
0 0
1 0

// 1 1
1 1

>>

!!

0 1
0 0

1 1
0 0

>>

and this is also a picture of the only 2-almost split sequence we have.
As a second example, consider the quiver Q′:

2

��
3 // 1

4

^^

and the corresponding path algebra A′ = kQ′. The Auslander-Reiten quiver of A′

looks like

P2

  

N2

  

I2

P1

>>

//

  

P3
// N1

//

==

!!

N3
// I1 //

??

��

I3

P4

>>

N4

>>

I4

We take B′ = kQ′′, where Q′′ is the quiver

a boo coo
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The Auslander-Reiten quiver of B′ looks like

Pc = Ia

##
Pb

##

;;

Ib

��

Pa

>>

Sb

;;

Ic

These algebras are both 1-representation finite, so in particular they are 1-
complete. Their tensor product Λ′ = A′ ⊗ B′ is therefore 2-complete. It is not
2-representation finite since B′ is not homogeneous. In this example, we cannot
draw the entire module category of Λ′, but we still have complete control over
the “higher Auslander-Reiten quiver” of Λ′, that is the Auslander-Reiten quiver of
add(M):

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

⊗

�

�

�

�

�

�

�

�

�

�

�

�

Here the dashed arrows represent τ2, and we have drawn them only between some
modules to avoid clogging the picture. We have again written ⊗ for indecomposable
summands of T , and � for the other indecomposable summands of M . It should
be clear from the picture which module corresponds to which node.

Notice that this example presents some regularity which is not to be expected
in general, since we have taken A′ to be homogeneous. Moreover, in this example
(and in general) we cannot directly check that arbitrary modules in mod Λ′ which
are in T⊥ have extensions on both sides with M.
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